• Title/Summary/Keyword: MHC class I

Search Result 110, Processing Time 0.024 seconds

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

Enhancement of cell-mediated immunity by administration of plasma protein in pigs 2. Proportion of T lymphocyte subpopulations and cells expressing MHC class I, II molecules in peripheral blood (돼지에서 plasma protein에 의한 세포성면역 증진효과에 관한 연구 2. 혈액내 T 림프구 아군 및 MHC class 세포의 분포율)

  • Yang, Chang-kun;Kim, Soon-jae;Moon, Jin-san;Jung, Suk-chan;Park, Yong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.2
    • /
    • pp.287-299
    • /
    • 1994
  • Plasma protein which has been known as one of nonspecific immunostimulators was added to feedstuff to examine its effect on the enhancement of cellular immune response in porcine immune system. A total of 40 piglets, 20 male and 20 female each, were fed for 30 days with or without plasma protein. The peripheral blood were collected and analyzed for the investigation of leukocyte subpopulations and their activities by using a panel of monoclonal antibodies specific to porcine leukocyte differentiation antigens and flow cytometry. The results obtained as follows. 1. Subpopulations expressing major histocompatibility complex(MHC) class I antigen were $96.2{\pm}3.1%$ and $86.6{\pm}3.8%$ in piglets fed with plasma protein and in piglets fed without plasma protein, respectively. 2. Proportion of leukocyte subpopulation expressing MHC class II antigens were significantly higher in the piglets fed with plasma protein than ones without plasma protein. The proportion was $27.6{\pm}3.6%$ and $16.6{\pm}2.2%$ in MHC class II DQ antigen, and $28.1{\pm}2.0%$ and $20.0{\pm}0.3%$ in MHC class II DR antigen, respectively. 3. A significant increase in the proportion of cells expressing poCD2 was not found in piglets fed plasma protein. 4. Proportion of subpopulation expressed porcine(Po) CD4 antigens which specific to helper T lymphocytes were not increased (18.3-19.1% vs. 25.6-28.8%), rather slightly decreased, in plasma protein-treated group. 5. The most important increase of proportion in plasma protein-treated group was the leukocyte subpopulation specific to $poCD8^+$ T cytotoxic/suppressor lymphocytes. The expression level was significantly higher up to 45.9-47.1% in plasma protein-treated group in comparing with 29.7-33.0% in non-plasma protein-treated group. 6. Lymphoblastogenetic responses using different concentrations of Con A mitogen and plasma protein has found that the responses of lymphocyte from piglets fed plasma protein was significantly activated (p<0.01). The activities measured by 3[H]-thymidine incorporation showed 3-6 times stronger in plasma protein-treated group than those in non-plasma protein-treated group. The study has concluded that plasma protein, which has known as a nonspecific immunostimulator, may have an immunoenhancing activities in porcine lymphoid system by increase the activated cell proportions and their blastogenetic properties which is critical to host immune responses.

  • PDF

Evidence for Direct Inhibition of MHC-Restricted Antigen Processing by Dexamethasone

  • Im, Sun-A;Gerelchuluun, Turmunkh;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.328-332
    • /
    • 2014
  • Dexamethasone (Dex) was shown to inhibit the differentiation, maturation, and antigen-presenting function of dendritic cells (DC) when added during DC generation or maturation stages. Here, we examined the direct effects of Dex on MHC-restricted antigen processing. Macrophages were incubated with microencapsulated ovalbumin (OVA) in the presence of different concentrations of Dex for 2 h, and the efficacy of OVA peptide presentation was evaluated using OVA-specific CD8 and CD4 T cells. Dex inhibited both class I- and class II-restricted presentation of OVA to T cells; this inhibitory effect on antigen presentation was much more potent in immature macrophages than in mature macrophages. The presentation of the exogenously added OVA peptide SIINFEKL was not blocked by Dex. In addition, short-term treatment of macrophages with Dex had no discernible effects on the phagocytic activity, total expression levels of MHC molecules or co-stimulatory molecules. These results demonstrate that Dex inhibits intracellular processing events of phagocytosed antigens in macrophages.

Sulforaphane Enhances MHC Class II-Restricted Presentation of Exogenous Antigens

  • Shin, Seul-Mee;Jung, Ki-Sung;Park, Yoon-Hee;Ko, Young-Wook;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • Sulforaphane is an isothiocyanate found in cruciferous vegetables that has been reported to be an effective cancer preventive agent inducing growth arrest and/or cell death in cancer cells of various organs. This paper reports that sulforaphane exerts immunomodulatory activity on the MHC-restricted antigen presenting function. Sulforaphane efficiently increased the class II-restricted presentation of an exogenous antigen, ovalbumin (OVA), in both dendritic cells (DCs) and peritoneal macrophages in vitro. The class II-restricted OVA presentation-enhancing activity of sulforaphane was also confirmed using mice that had been injected with sulforaphane followed by soluble OVA. On the other hand, sulforaphane did not affect the class I-restricted presentation of exogenous OVA at concentrations that increase the class II-restricted antigen presentation. At a high concentration ($20\;{\mu}M$), sulforaphane inhibited the class I-restricted presentation of exogenous OVA. Sulforaphane did not affect the phagocytic activity of the DCs, and the cell surface expression of total H-$2K^b$, B7-1, B7-2 and CD54 molecules, even though it increased the expression of I-$A^b$ molecules to a barely discernable level. These results show that sulforaphane increases the class II-restricted antigen presenting function preferentially, and might provide a novel insight into the mechanisms of the anti-cancer effects of sulforaphane.

Priming of Autoreactive $CD8^+T$ Cells Is Inhibited by Immunogenic Peptides Which Are Competitive for Major Histocompatibility Complex Class I Binding

  • You, Sooseong;Choi, Yoon Seok;Hong, Seokchan;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.13 no.3
    • /
    • pp.86-93
    • /
    • 2013
  • In the present study, we investigated if priming of autoreactive $CD8^+T$ cells would be inhibited by competitive peptides for major histocompatibility complex (MHC) class I binding. We used a mouse model of vitiligo which is induced by immunization of $K^b$-binding tyrosinase-related protein 2 (TRP2)-180 peptide. Competitive peptides for $K^b$ binding inhibited IFN-${\gamma}$production and proliferation of TRP2-180-specific $CD8^+T$ cells upon ex vivo peptide restimulation, while other MHC class I-binding peptides did not. In mice, the capability of inhibition was influenced by T-cell immunogenicity of the competitive peptides. The competitive peptide with a high T-cell immunogenicity efficiently inhibited priming of TRP2-180-specific $CD8^+T$ cells in vivo, whereas the competitive peptide with a low T-cell immunogenicity did not. Taken together, the inhibition of priming of autoreactive $CD8^+T$ cells depends on not only competition of peptides for MHC class I binding but also competitive peptide-specific $CD8^+T$ cells, suggesting that clonal expansion of autoreactive T cells would be affected by expansion of competitive peptide-specific T cells. This result provides new insights into the development of competitive peptides-based therapy for the treatment of autoimmune diseases.

Cordycepin Suppresses MHC-restricted Antigen Presentation and Leads to Down-regulation of Inflammatory Responses in Antigen Presenting Cells

  • Shin, Seulmee;Kim, Seulah;Hyun, Bobae;Lee, Aeri;Lee, Sungwon;Park, Chan-Su;Kong, Hyunseok;Song, Youngcheon;Lee, Chong-Kil;Kim, Kyungjae
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.347-354
    • /
    • 2013
  • Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. However, the therapeutic mechanism has not yet been elucidated. In this study, we examined the effects of cordycepin on the antigen-presenting function of antigen-presenting cells (APCs). Dendritic cells (DCs) were cultured in the presence of cordycepin and then allowed to phagocytose microspheres containing ovalbumin (OVA). After washing and fixing, the efficacy of OVA peptide presentation by DCs was evaluated using CD8 and CD4 T cells. Also, we confirmed the protein levels of proinflammatory cytokines through RT-PCR and Western blot analysis. Cordycepin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of cordycepin was also confirmed using mice that had been injected with cordycepin followed by soluble OVA. Furthermore, cordycepin suppressed the mRNA and protein levels of iNOS, COX-2, pro-inflammatory cytokines in a concentration-dependent manner. These results provide an understanding of the mechanism of the T cell response-regulating activity of cordycepin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.

Differential Activation of T Cells by T-Cell Receptor Ligand Analogs

  • Choi, Yun-Hi;Suh, Yu-Jin;Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.30 no.6
    • /
    • pp.415-420
    • /
    • 1997
  • Although $CD4^+$ T cell responses to protein-derived antigen have well been understood, the epitopes recognized by hapten-specific $CD4^+$ T cells have not been fully defined. In this study, we characterized the response of a T cell hybridoma (5Di0.1B8) which is specific for a hapten. N-hydroxysuccinimidyl-4-azidobenzoate (HSAB) restricted by MHC class II $I-A^d$. Using three different antigen presenting cells (APCs) expressing $I-A^d$, the role of class II MHC proteins in haptenic antigen presentation and subsequent activation of 5D10.1B8 has been examined. Activation of 5D10.1B8 T cells by HSAB analogs was also performed. Our results show that each APC activated T cells differentially and that interleukin-2 (IL-2) augmented antigen-presenting ability of all the APCs, suggesting that increased expression of class II MHC protein by IL-2 played an important role in HSAB presentation and T cell activation. Finally, early T cell receptor-dependent signals induced by HSAB or its analogs were examined by phosphotyrosine immunoblot analysis, and showed that tyrosine phosphorylation level of a 18-20 kD protein increased upon stimulation.

  • PDF

Analysis of the Stability of HLA-A2 Molecules Expressed on the Cell Surface

  • Lim, Jong-Seok;Lee, Ki-Young;Lee, Hee-Gu;Kim, Ik-Hwan;Lee, Chong-Kil;Han, Seong-Sun;Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.286-293
    • /
    • 1996
  • Association of antigenic peptide with class I MHC is believed to be crucial for maintaining stable conformation of class I molecules. T2 cells that are defective in TAP gene function mainly express class I molecules with an unstable conformation due to little or no association with antigenic peptides, whereas T1 cells that are normal in TAP gene function mainly express the stable form of class I molecules. In this work, attempts were made to determine the molecular stability of stable and unstable class I molecules. Dissociation of HLA-A2 molecules on T1 and T2 cells was monitored by flow cytometry using anti-HLA-A2 antibody after the cells were treated with brefeldin A to shut down the transport of newly-assembled HLA-A2. Estimated dissociation rate constants for the stable and unstable forms of HLA-A2 were 0.076 $h^{-1}$ and 0.66 $h^{-1}$, respectively. It appeared that both T1 and T2 cells express stable and unstable class I complex, but with different ratios of the two forms. Furthermore, $interferon-{\gamma}$ treatment of T1 cells appeared to induce the expression of both the stable and unstable class I molecules. These results demonstrate that class I MHC molecules can be divided into two groups in terms of structural stability and that they exist on the cell surface in both forms in a certain ratio.

  • PDF

A Combination Strategy for Construction of Peptide-β2m-H-2Kb Single Chain with Overlap Extension PCR and One-Step Cloning

  • Xu, Tao;Li, Xiaoe;Wu, You;Shahzad, Khawar Ali;Wang, Wei;Zhang, Lei;Shen, Chuanlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2184-2191
    • /
    • 2016
  • The time-consuming and high-cost preparation of soluble peptide-major histocompatibility complexes (pMHC) currently limits their wide uses in monitoring antigen-specific T cells. The single-chain trimer (SCT) of peptide-${\beta}2m$-MHC class I heavy chain was developed as an alternative strategy, but its gene fusion is hindered in many cases owing to the incompatibility between the multiple restriction enzymes and the restriction endonuclease sites of plasmid vectors. In this study, overlap extension PCR and one-step cloning were adopted to overcome this restriction. The SCT gene of the $OVA_{257-264}$ peptide-$(GS_4)_3-{\beta}2m-(GS_4)_4-H-2K^b$ heavy chain was constructed and inserted into plasmid pET28a by overlap extension PCR and one-step cloning, without the requirement of restriction enzymes. The SCT protein was expressed in Escherichia coli, and then purified and refolded. The resulting $H-2K^b/OVA_{257-264}$ complex showed the correct structural conformation and capability to bind with $OVA_{257-264}$-specific T-cell receptor. The overlap extension PCR and one-step cloning ensure the construction of single-chain MHC class I molecules associated with random epitopes, and will facilitate the preparation of soluble pMHC multimers.