• Title/Summary/Keyword: MH battery

Search Result 94, Processing Time 0.021 seconds

A Study on the Manufacturing Process of Fe-Ti Type Electrode for Ni/MH Secondary Battery (Ni/MH 2차전지용 Fe-Ti계 전극 제조공정에 대한 연구)

  • Joung, Sang-sik;Kim, Ki-won;Ahn, Hyo-jun;Joung, Soon-dol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.2
    • /
    • pp.65-75
    • /
    • 1998
  • Five different processes were selected and tested to find an useful method of manufacturing Fe-Ti type electrode. Initially, FeTi alloy was prepared by melting in plasma arc furnace and then powdered for shaping. Electroless Ni plating on these powder particles before shaping improved the discharge characteristics. The effects of heat-treatments on the electrode characteristics were also investigated. The discharge capacities of electrods were increased with the increasing heat-treatment temperatures. When heat treated at $1000^{\circ}C$ after shaping, the best results were acquired in the discharge capacity and cycle life. Both electroless Ni plating and heat-treatment were appeared to be crucial for the performance improvement of FeTi type electrode. Fe-Ti -Mn electrodes were prepared according to the process suggested in this study and tested to verify the promising effects of that.

  • PDF

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF

A Study on Metal Hydride Electrode of Ni/MH Battery(I) (니켈/금속수소 축전지의 금속수소 전극에 관한 연구(I))

  • Kim, Jeong-Seon;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Kim, Sang-Ju;Shin, Chee-Burm
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • A study on Mm type electrode which is relatively high in electrode capacity and low in material cost was performed to develope high performance nickel-metal hydride battery. The electrode characteristics were investigated by P-C-T, charge-discharge and microencapsulation treatment experiments. The plateau pressure and hydrogen absorption capacity obtained from the P-C-T experiment were 0.4 atm and 310 mAh/g, respectively. The electrode capacity and stability of microencapsulated electrode were improved than those of conductor mixed electrode and the microencapsulation was possible without pretreatment. The electrode capacity of microencapsulated Mm type alloy was 240~250 mAh/g(0.2 C).

  • PDF

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

The effect of Ni content on the discharge characteristics of Zr-V-Mn-Ni hydrogen storage alloy electrode (Zr-V-Mn-Ni 수소저장합금전극의 방전특성에 미치는 Ni 양의 효과에 관한 연구)

  • Lee, Sang-Min;Kim, Dong-Myung;Jung, Jae-Han;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.11-21
    • /
    • 1997
  • $ZrV_{0.7}Mn_{0.5}Ni_{1.2}$ alloy is attractive for anode material in Ni/MH secondary battery because of its large hydrogen storage capacity in gas-solid reaction and long cycling durability in KOH electrolyte. In this work, in order to further improve the discharge performance of this alloy electrode, the alloy was annealed by optimal condition which is for 12 hours at $1000^{\circ}C$. The alloy annealed under optimal condition had higher rate capability and discharge capacity than as-cast one. The microstructure of the as-cast and annealed alloy was investigated by scanning electron microscopy and energy dispersive spectroscopy. Ni content in the matrix was increased, being this homogenized after annealing. Additionally, The measurement of the surface area by B.E.T. analysis showed that there was little difference as-cast and annealed alloy. Therefore, improvement in the rate capability of the annealed alloy is due to increase of Ni content in the matrix.

  • PDF

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

Multi-thin plate welding characteristics of Low Carbon Steel for Ni-MH battery of using Continuous Wave Nd:YAG laser (연속파 Nd:YAG 레이저를 이용한 Ni-MH전지용 저탄소강의 다층 박판 용접 특성)

  • Yang, Yun-Seok;Hwang, Chan-youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.720-728
    • /
    • 2011
  • Lap joint welding conducts low carbon steel plates using a 2.0kW continuous wave Nd:YAG laser beam. The specimen is composed of thin plate of 20 sheets. Process Variables contain two controlled parameters of the laser power and the welding speed. In order to quantitatively examine the characteristics of the lap welding, the welding quality of the cut section, stain-stress behavior, and the hardness of the welded part are investigated. The weld width difference between the top and the bottom because the welding speed is increased. The reason, cooling rate is decreased because of fast welding speed. When the heat input is higher, larger volume of the base metal will melt and the welding heat has longer time to conduct into the bottom from the top. The microstructure and tensile properties of the joints are investigated in order to analyze the effects of heat input on the quality of laser welded specimen. From the results of the investigation, We observe that welding quality is good for the laser power of 1800W, and laser welding speed from 1.8m/min to 2.2m/min.

The Impeditive Properties and Charge/Discharge of Positive Active Material $LiMnO_2$ (정극 활물질 LiMnO2 충.방전과 임피던스 특성)

  • Wi, Seong-Dong;Kim, Jong-Ok;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.299-305
    • /
    • 2003
  • The battery industries have been developed to the implementation of lithium ion secondary cell from the cell of Ni/Cd and Ni/MH in the past to be asked of an age of high technology from low technology. Also in resent the polymeric cell to get a good high function with an age of new advanced information system is changed from the 21 century to the secondary batteries society. The properties of lithium secondary batteries have the high energy density, the long cycle time, the low self discharge area and the high active voltage. The wanted properties of secondary batteries for the motion of an apparatuses of industries of an high skill age have a small type trend of the energy density and it is become with a strong asking of the industrial society market about the storable medium of the convenience and new power energy. The electrochemical properties is researched for the cell to be synthesised and crystallized the positive active material LiMnO2 of the secondary cell at 9250C to get a new improved data of the electric discharge for that the capacitance of the LiMnO2 thin film that is improving and researching with the properties and a merit and demerit in the this kind of asking.

  • PDF

Production Processes of Porous Metals and Their Applications (다공질 금속의 제조와 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.155-164
    • /
    • 2015
  • Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990's, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.