• 제목/요약/키워드: MGO

검색결과 47건 처리시간 0.018초

Rapid Identification of Methylglyoxal Trapping Constituents from Onion Peels by Pre-column Incubation Method

  • Kim, Ji Hoon;Kim, Myeong Il;Syed, Ahmed Shah;Jung, Kiwon;Kim, Chul Young
    • Natural Product Sciences
    • /
    • 제23권4호
    • /
    • pp.247-252
    • /
    • 2017
  • The methylglyoxal (MGO) trapping constituents from onion (Allium cepa L.) peels were investigated using pre-column incubation of MGO and crude extract followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Among major constituents in outer scale of onion, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (2) was more effective MGO scavenger than quercetin (6) and its 4'-glucoside, spiraeoside (3). After 1 h incubation, compound 2 trapped over 90% MGO at a concentration of 0.5 mM under physiological conditions, but compounds 3 and 6 scavenged 45%, 16% MGO, respectively. HPLC-ESI/MS showed that compound 2 trapped two molecules of MGO to form a di-MGO adduct and compounds 3 and 6 captured one molecule of MGO to form mono-MGO adducts, and the positions 6 and 8 of the A ring of flavonoids were major active sites for trapping MGO.

Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction

  • Do, Moon Ho;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.158-164
    • /
    • 2017
  • Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.

Trapping of Methylglyoxal by Sieboldin from Malus baccata L. and Identification of Sieboldin-Methylglyoxal Adducts Forms

  • Kim, Ji Hoon;Zhang, Kaixuan;Lee, Juhee;Gao, En Mei;Lee, Yun Jung;Son, Rak Ho;Syed, Ahmed Shah;Kim, Chul Young
    • Natural Product Sciences
    • /
    • 제27권4호
    • /
    • pp.245-250
    • /
    • 2021
  • The methylglyoxal (MGO) trapping constituents from Malus baccata L. were investigated using incubation of MGO and crude extract under physiological conditions followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Sieboldin was identified as a major active molecule representing MGO-trapping activity of the crude extract. After reaction of sieboldin and MGO, remaining MGO was calculated by microplate assay method using imine (Schiff base) formation of 2,4-dinitrophenylhydrazine (DNPH) and aldehyde group. After 4 h incubation, sieboldin trapped over 43.8% MGO at a concentration of 0.33 mM and showed MGO scavenging activity with an RC50 value of 0.88 mM for the incubation of 30 min under physiological conditions. It was also confirmed that sieboldin inhibited the production of advanced glycation end products (AGE) produced by bovine serum albumins (BSA)/MGO. Additionally, MGO trapping mechanism of sieboldin was more specifically identified by 1H-, 13C-, 2D NMR and, confirm to be attached to the position of C-3' (or 5').

Hot water extract of Loliolus beka attenuates methylglyoxal-induced advanced glycation end products formation in human umbilical vein endothelial cells

  • Cha, Seon-Heui;Jun, Hee-Sook
    • Fisheries and Aquatic Sciences
    • /
    • 제25권10호
    • /
    • pp.517-524
    • /
    • 2022
  • Over production of methylglyoxal (MGO) a highly reactive dicarbonyl compound, has been associated in progressive diabetes with vascular complication. Therefore, we investigated whether hot water extract of Loliolus beka meat (LBM-HWE) presents a preserve effect against MGO-induced cellular damage in human umbilical vein endothelial cells (HUVECs). The LBM-HWE extract showed to inhibit MGO-induced cytotoxicity. Additionally, the LBM-HWE reduced mRNA expression of pro-inflammatory cytokines, and reduced MGO-induced advanced glycation end product (AGEs) formation. Furthermore, LBM-HWE induced glyoxalase-1 mRNA expression and reduced MGO-induced carbonyl protein formation in HUVECs. The results implicate that LBM-HWE has protective ability against MGO-induced HUVECs toxicity by preventing AGEs formation. In conclusion, LBM-HWE could be used as a potential treatment material for the prevention of vascular complications of diabetes.

Effects of crocin and metformin on methylglyoxal-induced reproductive system dysfunction in diabetic male mice

  • Khorasani, Maryam Kheirollahi;Ahangarpour, Akram;Khorsandi, Layasadat
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.221-228
    • /
    • 2021
  • Objective: This study investigated the effect of crocin in methylglyoxal (MGO)-induced diabetic male mice. Methods: Seventy 1-month-old male NMRI mice weighing 20-25 g were divided into seven groups (n=10): sham, MGO (600 mg/kg/day), MGO+crocin (15, 30, and 60 mg/kg/day), MGO+metformin (150 mg/kg/day), and crocin (60 mg/kg/day). MGO was administered orally for 30 days. Starting on day 14, after confirming hyperglycemia, metformin and crocin were administered orally. On day 31, plasma and tissue samples were prepared for experimental assessments. Results: Blood glucose and insulin levels in the MGO group were higher than those in the sham group (p<0.001), and decreased in response to metformin (p<0.001) and crocin treatment (not at all doses). Testis width and volume decreased in the MGO mice and improved in the crocin-treated mice (p<0.05), but not in the metformin group. Superoxide dismutase levels decreased in diabetic mice (p<0.05) and malondialdehyde levels increased (p<0.001). Crocin and metformin improved malondialdehyde and superoxide dismutase. Testosterone (p<0.001) and sperm count (p<0.05) decreased in the diabetic mice, and treatment with metformin and crocin recovered these variables. Luteinizing hormone levels increased in diabetic mice (p<0.001) and crocin treatment (but not metformin) attenuated this increase. Seminiferous diameter and height decreased in the diabetic mice and increased in the treatment groups. Vacuoles and ruptures were seen in diabetic testicular tissue, and crocin improved testicular morphology (p<0.01). Conclusion: MGO increased oxidative stress, reduced sex hormones, and induced histological problems in male reproductive organs. Crocin and metformin improved the reproductive damage caused by MGO-induced diabetes.

전기방사법을 이용한 PVdF/Fe3O4-GO(MGO) 복합 분리막 제조 및 비소 제거 특성평가 (Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics)

  • 장원기;후건;변홍식;이재용
    • 멤브레인
    • /
    • 제26권6호
    • /
    • pp.480-489
    • /
    • 2016
  • 본 연구에서는, 전기방사법을 이용하여 산화철-산화그래핀($Fe_3O_4/GO$, metallic graphene oxide; MGO)이 도입된 PVdF/MGO 복합나노섬유(PMG)를 제조하였으며, 이를 활용하여 비소제거에 대한 특성 평가를 진행하였다. MGO의 경우 In-situ-wet chemical 방법으로 제조하였으며, FT-IR, XRD분석을 진행하여, 형태와 구조를 확인하였다. 나노섬유 분리막의 기계적 강도 개선을 위하여 열처리과정을 진행하였으며, 제조된 분리막의 우수한 기계적 강도 개선 효과를 확인할 수 있었다. 그러나, PMG 막의 경우, 도입된 MGO의 함량이 증가할수록 기계적 강도가 감소되는 경향성을 보여주었으며, 기공크기 분석결과로부터, $0.3{\sim}0.45{\mu}m$의 기공크기를 가진 다공성 분리막이 제조되었음을 확인할 수 있었다. 수처리용 분리막으로의 활용 가능성 조사를 위해, 수투과도 분석을 실시하였다. 특히, PMG2.0 샘플의 경우 0.3 bar 조건에서, PVdF 나노섬유막($91kg/m^2h$)에 비해 약 70% 향상된 결과값($153kg/m^2h$)을 나타내었다. 또한, 비소 흡착실험 결과로부터, PMG 막의 경우, 비소3가와 5가에 최대 81%, 68%의 높은 제거율을 보여주었으며, 흡착등온선 분석으로부터, 제조된 PMG 막의 경우 비소3가, 5가 모두 Freundlich 흡착거동을 따른다는 것을 확인하였다. 위 모든 결과로부터, PVdF/MGO 복합 나노섬유 분리막은 비소제거 및 수처리용 분리막으로 충분히 활용할 수 있을 것으로 판단된다.

MGO Chiller 시스템의 제어 방식에 따른 온도 동특성 연구 (Study of Temperature Dynamic Characteristics of Various Control Methods for MGO Chiller System)

  • 조희주;김성훈;최정호
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.139-145
    • /
    • 2019
  • It is important that an MGO Chiller System, which is one of the sulfur oxide emission control technologies, is designed to meet the fuel temperature requirements, even with sudden engine load changes. Three different control algorithms (PI, Cascade, and MPC) were applied to an indirect MGO chiller system to compare and analyze the outlet temperature dynamic characteristics of the system through a case study. The results showed that the MPC control method had the best temperature following characteristics in the case study, and the temperature deviation range was reduced by approximately 5% compared to the PI control method.

포도당분해산물이 사람 복막중피세포 활성화에 미치는 영향 (Effects of Glucose Degradation Products on Human Peritoneal Mesothelial Cells)

  • 송재숙;이경림;하헌주
    • 한국미생물·생명공학회지
    • /
    • 제33권4호
    • /
    • pp.308-314
    • /
    • 2005
  • 상용 복막투석액에 함유된 고농도의 포도당과 포도당 분해산물(glucose degradation products: CDP)이 복막의 비후, 복막 투과성의 증가 및 한외여과 부전과 같은 복막의 구조적, 기능적 변화를 초래하리라 추정되고 있다. 본 연구에서는 CDP성분이 사람 복막중피세포 활성화에 미치는 영향을 검색하였고 또 이때 ROS와 PKC가 관여하는지를 검색하였다. 혈청이 배제된 M199 배양액으로 성장을 동일화시킨 사람 복막중피세포를 GDP인 methylglyoxal(MGO), acetaldehyde, 그리고 3,4-dioxyglucosone-3-ene(3,4-DGE)으로 48시 간 동안 자극하였고, 복막의 투과성에 대한 지표로서 혈관내피성장인자(vascular endothelial growth factor VEGF)를, 섬유화의 지표로서 fibronectin과 heat shock protein 47(hsp47)의 단백을 정량하였다. 활성산소족(reactive oxygen species:ROS)과 protein kinase C(PKC)의 관여여부는 각각 항산화제 N-acetylcystein(NAC)과 PKC 억제제 calphostin C의 억제 효과로 검색하였다. MGO는 대조군과 비교하여 VEGF 분비를 1.9배, fibronectin분비를 1.5배 그리고 hsp47 표현을 1.3배로 유의하게 증가시켰다(p<0.05). MGO에 의한 VEGF 상향 조절은 calphostin C와 NAC에 의하여 유의하게 억제되었다. 사람 복막중피세포에서 VEGF 분비는 acetaldehyde에 의하여 증가하였으나 3,4-DGE에 의하여 억제되었고, fibronectin 분비와 hsp47 표현은 acetaldehyde나 3,4-DGE에 의하여 영향을 받지 않았다. 이상을 종합할 때, ROS생산과 PKC활성화가 상용투석액내 함유된 MGO에 의한 점진적인 복막의 투과성 증가, 세포외기질 축적 그리고 복막 섬유화를 유발하는 주된 신호체계로서 이를 선택적으로 억제함으로써 복막의 기능을 유지할 수 있을 것으로 생각된다.

Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model

  • Takanche, Jyoti Shrestha;Kim, Ji-Eun;Jang, Sungil;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • 제52권2호
    • /
    • pp.155-169
    • /
    • 2022
  • Purpose: The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. Results: MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.

해상용 경유의 희석량에 따른 선박용 윤활유의 유변학적 거동연구 (Rheological behavior study of Marine Lubricating oil on the amount of MGO (Marine Gas Oil) dilution)

  • 송인철;이영호;여영화;안수현;김대일
    • 해양환경안전학회지
    • /
    • 제22권2호
    • /
    • pp.240-245
    • /
    • 2016
  • 본 연구에서는 해상용 경유의 희석량에 따른 선박용 윤활유의 점도 및 전단응력의 변화 등 유변학적 거동에 대한 연구를 하였다. 연료희석에 의한 윤활유의 점도감소는 피스톤링 및 라이너의 마모로 인한 엔진내구성을 저하키는 중요한 요소이다. 연구에 사용된 윤활유는 고유황 경유(황함유량 0.05 %)를 3 %, 6 %, 10 %, 15 %, 20 %로 희석하여 magnetic stirrer를 이용, 혼합하여 제조하였다. 측정온도는 $-10^{\circ}C{\sim}80^{\circ}C$ 범위로 설정하고, 점도 및 전단응력 변화는 회전점도계인 Brookfield Viscometer를 이용하여 측정하였다. 윤활유에 해상용 경유의 희석량이 증가할수록 점도 및 전단응력이 감소하며, 이것은 상대적으로 낮은 점도의 해상용 경유가 윤활유에 희석됨에 따라 윤활유의 점도 및 전단응력이 낮아지기 때문이다. 특히, 저온($0{\sim}-10^{\circ}C$)에서는 점도 및 전단응력이 급격이 낮아지다가, $40^{\circ}C$ 이상에서는 점도 및 전단응력 감소가 해상용 경유 희석량의 영향을 거의 받지 않는다. 온도가 높아짐에 따라, 윤활유의 점도 및 전단응력 감소는 윤활유의 뉴턴유체 거동을 보이는 것을 확인했다. 경유의 혼입에 의한 점도감소로 선박의 엔진마모를 촉진할 수 있으므로 엔진의 내구성 향상을 위해 윤활유의 주기적인 관리가 필요하다.