DOI QR코드

DOI QR Code

Trapping of Methylglyoxal by Sieboldin from Malus baccata L. and Identification of Sieboldin-Methylglyoxal Adducts Forms

  • Kim, Ji Hoon (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Zhang, Kaixuan (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Lee, Juhee (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Gao, En Mei (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Lee, Yun Jung (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Son, Rak Ho (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Syed, Ahmed Shah (Department of Pharmacognosy, Faculty of Pharmacy, University of Sindh) ;
  • Kim, Chul Young (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University)
  • Received : 2021.11.08
  • Accepted : 2021.12.11
  • Published : 2021.12.31

Abstract

The methylglyoxal (MGO) trapping constituents from Malus baccata L. were investigated using incubation of MGO and crude extract under physiological conditions followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Sieboldin was identified as a major active molecule representing MGO-trapping activity of the crude extract. After reaction of sieboldin and MGO, remaining MGO was calculated by microplate assay method using imine (Schiff base) formation of 2,4-dinitrophenylhydrazine (DNPH) and aldehyde group. After 4 h incubation, sieboldin trapped over 43.8% MGO at a concentration of 0.33 mM and showed MGO scavenging activity with an RC50 value of 0.88 mM for the incubation of 30 min under physiological conditions. It was also confirmed that sieboldin inhibited the production of advanced glycation end products (AGE) produced by bovine serum albumins (BSA)/MGO. Additionally, MGO trapping mechanism of sieboldin was more specifically identified by 1H-, 13C-, 2D NMR and, confirm to be attached to the position of C-3' (or 5').

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1A2C1009455 and NRF-2020R1A6A1A03042854).

References

  1. Inoue, Y.; Kimura, A. Adv. Microb. Physiol. 1995, 37, 177-227. https://doi.org/10.1016/S0065-2911(08)60146-0
  2. Rabbani, N.; Godfrey, L.; Xue, M.; Shaheen, F.; Geoffrion, M.; Milne, R.; Thornalley, P. J. Diabetes 2011, 60, 1973-1980. https://doi.org/10.2337/db11-0085
  3. Ruggiero-Lopez, D.; Lecomte, M.; Moinet, G.; Patereau, G.; Lagarde, M.; Wiernsperger, N. Biochem. Pharmacol. 1999, 58, 1765-1773. https://doi.org/10.1016/S0006-2952(99)00263-4
  4. Brownlee, M. Diabetes Care 1992, 15, 1835-1843. https://doi.org/10.2337/diacare.15.12.1835
  5. Li, X.; Zheng, T.; Sang, S.; Lv, L. J. Agric. Food Chem. 2014, 62, 12152-12158. https://doi.org/10.1021/jf504132x
  6. Totlani, V. M.; Peterson, D. G. J. Agric. Food Chem. 2006, 54, 7311-7318. https://doi.org/10.1021/jf061244r
  7. Lo, C. Y.; Li, S.; Tan, D.; Pan, M. H.; Sang, S.; Ho, C. T. Mol. Nutr. Food Res. 2006, 50, 1118-1128. https://doi.org/10.1002/mnfr.200600094
  8. Hu, T. Y.; Liu, C. L.; Chyau, C. C.; Hu, M. L. J. Agric. Food Chem. 2012, 60, 8190-8196. https://doi.org/10.1021/jf302188a
  9. Chen, X. Y.; Huang, I. M.; Hwang, L. S.; Ho, C. T.; Li, S.; Lo, C. Y. J. Funct. Foods 2014, 8, 259-268. https://doi.org/10.1016/j.jff.2014.03.025
  10. Zhu, Y.; Zhao, Y.; Wang, P.; Ahmedna, M.; Sang, S. Chem. Res. Toxicol. 2015, 28, 1842-1849. https://doi.org/10.1021/acs.chemrestox.5b00293
  11. Gosch, C.; Halbwirth, H.; Stich, K. Phytochemistry 2010, 71, 838-843. https://doi.org/10.1016/j.phytochem.2010.03.003
  12. Williams, A. H. J. Chem. Soc. 1961, 4133-4136.
  13. Xiao, Z.; Zhang, Y.; Chen, X.; Wang, Y.; Chen, W.; Xu, Q.; Li, P.; Ma, F. Food Chem. 2017, 231, 324-331. https://doi.org/10.1016/j.foodchem.2017.03.111
  14. Gilbert, R. P.; Brandt, R. B. Anal. Chem. 1975, 47, 2418-2422. https://doi.org/10.1021/ac60364a003
  15. Kim, J. H.; Kim, M. I.; Syed, A. S.; Jung, K.; Kim, C. Y. Nat. Prod. Sci., 2017, 23, 247-252. https://doi.org/10.20307/nps.2017.23.4.247
  16. Ohmori, S.; Mori, M.; Kawase, M.; Tsuboi, S. J. Chromatogr. 1987, 414, 149-155. https://doi.org/10.1016/0378-4347(87)80033-6
  17. Liu, G.; Xia, Q.; Lu, Y.; Zheng, T.; Sang, S.; Lv, L. J. Agric. Food Chem. 2017 65, 2233-2239. https://doi.org/10.1021/acs.jafc.6b05811
  18. Lo, C. Y.; Hsiao, W. T.; Chen, X. Y. J. Food Sci. 2011, 76, H90-H96. https://doi.org/10.1111/j.1750-3841.2011.02067.x