Kim SungTak;Kim SangJin;Jung Hoyoung;Kim Hoirin;Hahn Minsoo
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.253-256
/
2002
한국어 숫자는 단음절로 이루어져 있고, 연속적으로 발음할 때 조음현상에 의해 발음이 심하게 변하고, 숫자간의 경계를 규정하기가 어려워진다. 특히 잡음환경에서는 한국어의 무성음인 자음구간의 주파수 특징이 많이 왜곡되어 성능이 저하된다. 본 논문에서는 전화망에서의 고성능 연속숫자음 인식기 개발을 위하여 그 첫 단계로서 다양한 조건에서 MFCC 특징계수를 구하는 방법들과 문맥독립 및 문맥종속 HMM의 상태수 및 각 상태에서의 mixture 수 변화에 대한 성능을 분석해본다. 음향모델로는 문맥독립 모델인 음소와 문맥종속 모델인 triphone 모델을 모두 평가하였다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06d
/
pp.60-63
/
1998
본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39A
no.5
/
pp.244-250
/
2014
The Most Serious Engine Faults Are Those That Occur Within The Engine. Traditional Engine Fault Diagnosis Is Highly Dependent On The Engineer'S Technical Skills And Has A High Failure Rate. Neural Networks And Support Vector Machine Were Proposed For Use In A Diagnosis Model. In This Paper, Noisy Sound From Faulty Engines Was Represented By The Mel Frequency Cepstrum Coefficients, Zero Crossing Rate, Mean Square And Fundamental Frequency Features, Are Used In The Hidden Markov Model For Diagnosis. Our Experimental Results Indicate That The Proposed Method Performs The Diagnosis With A High Accuracy Rate Of About 98% For All Eight Fault Types.
본 논문은 오디오와 비디오 정보의 융합을 통한 멀티 모달 음성 인식 시스템을 제안한다. 음성 특징 정보와 영상 정보 특징의 융합을 통하여 잡음이 많은 환경에서 효율적으로 사람의 음성을 인식하는 시스템을 제안한다. 음성 특징 정보는 멜 필터 캡스트럼 계수(Mel Frequency Cepstrum Coefficients: MFCC)를 사용하며, 영상 특징 정보는 주성분 분석을 통해 얻어진 특징 벡터를 사용한다. 또한, 영상 정보 자체의 인식률 향상을 위해 피부 색깔 모델과 얼굴의 형태 정보를 이용하여 얼굴 영역을 찾은 후 강력한 입술 영역 추출 방법을 통해 입술 영역을 검출한다. 음성-영상 융합은 변형된 시간 지연 신경 회로망을 사용하여 초기 융합을 통해 이루어진다. 실험을 통해 음성과 영상의 정보 융합이 음성 정보만을 사용한 것 보다 대략 5%-20%의 성능 향상을 보여주고 있다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.78-81
/
2003
본 논문은 SVM(support vector machine)을 이용한 음성인식기에 대해 효과적인 특징 파라메터를 제안한다. SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있으며 최적의 특징 파라메터를 선택하기 위해 본 논문에서는 SVM을 이용한 음성인식기를 사용하여 PCA(principal component analysis), ICA(independent component analysis) 알고리즘을 적용하여 MFCC(met frequency cepstrum coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 ICA에 의한 특징 파라메터가 가장 우수한 성능을 나타내었으며 특징 공간에서 각 클래스의 분포도 또한 ICA가 가장 높은 선형 분별성을 나타내었다.
본 논문에서는 독감확산 예측을 위한 웨어러블 센서를 이용한 기침 감지 모델을 제안한다. 서로 상이한 기침 신체데이터를 사용하고 기침 감지 알고리즘의 구현없이 기계가 학습하는 방식인 멀티모달 DNN을 이용하여 설계하였다. 또한 웨어러블 센서를 통해 실생활의 기침 오디오 데이터와 기침 3축 가속도 데이터를 수집하였고, 두 개의 데이터중 하나의 데이터만으로도 감지를 위한 학습이 가능토록하기 위해 각각 MFCC와 FFT를 이용하여 특징 벡터를 추출하는 방법을 이용하였다.
본 논문은 모바일 환경에서의 다중생체인식을 통한 개인인증 시스템을 제안한다. 다중생체인식을 위하여 얼굴인식과 화자인식을 선택하였으며, 시스템의 인식 시나리오는 다음을 따른다. 얼굴인식을 위하여 Modified census transform (MCT) 기반의 얼굴검출과 k-means 클러스터 분석 (cluster analysis) 알고리즘 기반의 눈 검출을 통해 얼굴영역 전처리를 수행하고, principal component analysis (PCA) 기반의 얼굴인증 시스템을 구현한다. 화자인식을 위하여 음성의 끝점 추출과 Mel frequency cepstral coefficient(MFCC) 특징을 추출하고, dynamic time warping (DTW) 기반의 화자 인증 시스템을 구현한다. 그리고 각각의 생체인식을 본 논문에서 제안된 방법을 기반으로 융합하여 인식률을 향상시킨다.
Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.
Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
International Journal of Computer Science & Network Security
/
v.21
no.5
/
pp.129-132
/
2021
Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.
HyunBeen Jang;UiHyun Cho;SuYeon Kwon;Sun Min Lim;Selin Cho;JeongEun Nah
Annual Conference of KIPS
/
2023.11a
/
pp.916-917
/
2023
본 연구는 사용자의 음성 패턴 분석과 텍스트 분류를 중심으로 이루어지는 한국어 감정 인식 작업을 개선하기 위해 Macaron Net 텍스트 모델의 결과와 MFCC 음성 모델의 결과 가중치 합을 분류하여 최종 감정을 판단하는 기존 82.9%였던 정확도를 텍스트 모델 기준 87.0%, Multi-Modal 모델 기준 88.0%로 개선한 모델을 제안한다. 해당 모델을 우울증 예방 플랫폼의 핵심 모델에 탑재하여 covid-19 팬데믹 이후 사회의 문제점으로 부상한 우울증 문제 해소에 기여 하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.