• 제목/요약/키워드: MFC sensor

검색결과 35건 처리시간 0.028초

하이브리드형 질량 유량 제어기의 설계 및 실현 (Design and Implementation of a Hybrid-Type Mass Flow Controller)

  • 이명의;정원철
    • 한국산학기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.63-70
    • /
    • 2003
  • 본 논문에서는 반도체 제조장비의 핵심 부품 중에 하나인 질량유량제어기(MFC, Mass Flow Controller)클 설계하고 구현하였다 Microchip社의 마이크로콘트롤러(Microcontroller) PIC 16F876을 사용하여 개발된 MFC는 여러가지 문제점을 가진 아날로그(Analog) 방식의 MFC와 고가의 DSP(Digital Signal Processor) 및 고분해능의 AD변환기(Analog to Digital Convertor)를 사용하는 디지털 MFC의 장점을 혼합한 하이브리드형(Hybrid-Type)이다. 본 논문에서 개발된 MFC는 크게 센서부(Sensor Unit), 제어부(Control Unit), 구동기부(Actuator Unit)로 구성되었으며, 성능향상을 위한 자동보정(Automatic Calibration) 알고리즘과 표준테이블(Reference Table) 방식을 사용하였다.

  • PDF

MFC 액츄에이터가 부착된 외팔 평판의 능동 진동 제어 (Active Vibration Control of Cantilever Plate Equipped with MFC Actuators)

  • 곽문규;양동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.533-534
    • /
    • 2013
  • This paper is concerned with the active vibration control of rectangular plate equipped with MFC actuators. To this end, the dynamic model of the rectangular plate bonded with MFC sensors and actuators was derived by means of the Rayleigh-Ritz method. The MFC actuator and sensor were modeled based on the pin-force assumption. The theoretical model was then validated experimentally. The multiinput and multi-output (MIMO) Positive Position Feedback (PPF) controller was designed based on the natural mode shapes and implemented using dSpace system and Simulink. The proposed control algorithm was applied to the cantilever plate having two MFC wafers having both sensor and actuator. Numerical and experimental investigations were carried out. Both theoretical and experimental result shows that the proposed control algorithm can effectively suppress vibrations of cantilever plate.

  • PDF

MFC 센서를 이용한 응력 확대 계수 측정에 관한 연구 (A Study of Stress Intensity Factors using Micro Fiber Composite Sensors)

  • 오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제29권3호
    • /
    • pp.76-81
    • /
    • 2011
  • Recently, the structural failures due to fatigue occur frequently with the increase of size of ships and offshore structures. In this respect, the assessment of fatigue life and the residual strength are very important. Currently, the smart materials technology has demonstrated a variety of possibilities for a diagnosis of structural strength and structural health condition for large structures. The benefits and feature of the MFC sensor are more flexible, durable and reliable than conventional smart material. In this study, Micro Fiber Composite (MFC) sensor for the measurement of stress intensity factor (SIF) of two dimensional cracks induced in a structure is developed. Two MFC sensors are placed in the vicinity of the crack tip close to each other with the crack tip in between them. The SIFs of Mode I($K_I$) as well as of Mode II($K_{II}$) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results and measured value.

미생물연료전지와 에너지 하베스팅에 기반한 에너지 자립형 무선 센서 시스템 (An Energy Self-Sustainable Wireless Sensor System Based on a Microbial Fuel Cell (MFC) and Energy Harvester (EH))

  • 여정진;박소진;임종훈;양윤석
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권5호
    • /
    • pp.208-212
    • /
    • 2018
  • Microbial fuel cell (MFC) technology has been attractive since it can not only treat organic waste in an eco-friendly way by digesting it but also generate electricity by the unique metabolic process of microbes. However, it hasn't been employed in practical use until now because it is hard to integrate a small electricity up to an adequate amount of electric power and difficult to keep its bio-electric activity consistent. In this study, we combined an energy harvester with MFC (MFC-EH) to make the power-integration convenient and developed an energy self-sustainable wireless sensor system driven by a stable electric power produced by MFC-EH. Additionally, we build the low power application measuring data to be cast by the web in real-time so that it can be quickly and easily accessed through the internet. The proposed system could contribute to improvement of waste treatment and up-cycling technologies in near future.

질량유량제어기용 센서튜브의 정특성과 동특성에 관한 연구 (Dynamic and Static Characteristics of Sensor Tube for Mass Flow Controller)

  • 김영수;이상경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.531-537
    • /
    • 2004
  • In this paper, the static and dynamic characteristics in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC. the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations among flow rate, heat generated by heating wire. and sensor location were investigated to find optimized condition. Finally, the relation between sensor voltage through analog digital conversion(ADC) and flow rate in the sensor tube can be represented. Based on this study, static and dynamic characteristics of sensor tube can be used for design of mass flow controller.

Teensy 마이크로 컨트롤러 기반 산소 유량 제어기 개발 및 성능평가 (Development and Evaluation of a Teensy Microcontroller-based O2 Mass Flow Controller)

  • 유민상;장연숙;김무환;조성보
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권4호
    • /
    • pp.193-200
    • /
    • 2021
  • Flowmeter and oxygen sensors are listed in COVID-19 essential medical devices. This article reports a Teensy microcontroller-based Oxygen mass flow controller (MFC), core part of the oxygen respirator or extracorporeal membrane oxygenation (ECMO). The developed MFC consisting of the microcontroller, MEMS flow sensor, and solenoid valve was able to accurately control 0 to 100 sccm of oxygen flow rate. The pressure of vacuum chamber increased proportionally to the flow rate (0.998 of Pearson correlation coefficient). The experimental results proved that the developed MFC exhibits comparable performance to a commercial MFC in accuracy, settling time, linearity with pressure, and repeatability of oxygen mass flow control. It is expected that this simple and cheap MFC is utilized for oxygen therapy against the severe acute respiratory syndrome coronavirus 2.

질량흐름 제어기의 센서 튜브에서 열전달현상에 관한 연구 (A Study of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller)

  • 이상경;김영수
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.35-39
    • /
    • 2003
  • In this paper, the heat transfer phenomena in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC, the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations of flow rate, generated heat by heating wire, sensor location and tube thickness were investigated to find the optimized condition. Based on this study, static and dynamic characteristics of sensor can be used for mass flow controller.

  • PDF

피로 균열 진전에 따른 응력확대계수 측정에 관한 연구 (A Study on the Measurement of Stress Intensity Factors for the Fatigue Crack Propagation)

  • 오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.80-85
    • /
    • 2012
  • Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. In this respect, fatigue crack detection and structural health assessment are very important. Currently, various smart materials are used for detecting fatigue crack and measurement of SIFs(Stress Intensity Factors). So, this paper presented a measurement of SIFs using MFC(Micro Fiber Composite) sensor which is the one of the smart material. MFC sensor is more flexible, durable and reliable than other smart materials. The SIFs of Mode I(K I) as well as Mode II(K II) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results.

Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템 (Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor)

  • 박재현;이시맥;이범주;김선주;유형민
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.429-434
    • /
    • 2023
  • 본 연구에서는 기존 배관 가스 누출 감지에 사용되던 음향방출 센서가 실시간 모니터링에 적용될 때 발생할 수 있는 문제들을 개선하기 위해, Macro-fiber composite (MFC) 트랜스듀서를 음향방출 센서로 사용하여 가스 누출 감지 시스템에 적용하였다. 적용 전 MFC의 구조를 최적화하기 위해 구조해석을 진행하여 제작하였고, 그 결과 MFC가 가지는 유연성으로 굴곡진 배관에 잘 밀착되어 AE 신호를 문제없이 수신할 수 있었다. AE 신호 분석 결과 고압 누출, 저압 누출 모두 파라미터 값 변화에 유의미한 결과를 보였으며, 특히, FFT 그래프의 파라미터에서 고압 누출의 경우 누출이 없는 경우 대비 120~626%의 변화량, 저압 누출의 경우 9~22%의 변화량을 보였다. 또한, 누출 발생 부위에서의 거리에 따라, 거리가 멀수록 이러한 파라미터 변화량이 줄어드는 경향을 보여, 추후 파라미터 변화량 감지를 통해 누출 감지가 가능할 뿐만 아니라, 변화량으로부터 누출 발생 위치를 파악할 수 있을 것으로 보인다.