• Title/Summary/Keyword: MFC sensor

Search Result 35, Processing Time 0.042 seconds

Design and Implementation of a Hybrid-Type Mass Flow Controller (하이브리드형 질량 유량 제어기의 설계 및 실현)

  • 이명의;정원철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • In this paper, an MFC (Mass Flow Controller) which is widely used in many semiconductor manufacturing processes for controlling the mass flow rate of a gas is designed and implemented using the PIC 16F876 of Microchip, Inc. The MFC implemented in this thesis has the form of hybrid-type, i.e., the mixed-type of the analog-type MFC, which has many problems such as low accurary, and digital-type MFC, which use an expensive DSP (Digital Signal Processor) and an ADC (Analog to Digital Convertor) with high precision. The MFC is consists of the sensor unit, the control unit and the actuator unit, and it has used the automatic calibration algorithm and the reference table method for the improvement of the performance.

  • PDF

Active Vibration Control of Cantilever Plate Equipped with MFC Actuators (MFC 액츄에이터가 부착된 외팔 평판의 능동 진동 제어)

  • Kwak, Moon K.;Yang, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.533-534
    • /
    • 2013
  • This paper is concerned with the active vibration control of rectangular plate equipped with MFC actuators. To this end, the dynamic model of the rectangular plate bonded with MFC sensors and actuators was derived by means of the Rayleigh-Ritz method. The MFC actuator and sensor were modeled based on the pin-force assumption. The theoretical model was then validated experimentally. The multiinput and multi-output (MIMO) Positive Position Feedback (PPF) controller was designed based on the natural mode shapes and implemented using dSpace system and Simulink. The proposed control algorithm was applied to the cantilever plate having two MFC wafers having both sensor and actuator. Numerical and experimental investigations were carried out. Both theoretical and experimental result shows that the proposed control algorithm can effectively suppress vibrations of cantilever plate.

  • PDF

A Study of Stress Intensity Factors using Micro Fiber Composite Sensors (MFC 센서를 이용한 응력 확대 계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.76-81
    • /
    • 2011
  • Recently, the structural failures due to fatigue occur frequently with the increase of size of ships and offshore structures. In this respect, the assessment of fatigue life and the residual strength are very important. Currently, the smart materials technology has demonstrated a variety of possibilities for a diagnosis of structural strength and structural health condition for large structures. The benefits and feature of the MFC sensor are more flexible, durable and reliable than conventional smart material. In this study, Micro Fiber Composite (MFC) sensor for the measurement of stress intensity factor (SIF) of two dimensional cracks induced in a structure is developed. Two MFC sensors are placed in the vicinity of the crack tip close to each other with the crack tip in between them. The SIFs of Mode I($K_I$) as well as of Mode II($K_{II}$) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results and measured value.

An Energy Self-Sustainable Wireless Sensor System Based on a Microbial Fuel Cell (MFC) and Energy Harvester (EH) (미생물연료전지와 에너지 하베스팅에 기반한 에너지 자립형 무선 센서 시스템)

  • Yeo, Jeongjin;Park, Sojin;Lim, Jonghun;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.208-212
    • /
    • 2018
  • Microbial fuel cell (MFC) technology has been attractive since it can not only treat organic waste in an eco-friendly way by digesting it but also generate electricity by the unique metabolic process of microbes. However, it hasn't been employed in practical use until now because it is hard to integrate a small electricity up to an adequate amount of electric power and difficult to keep its bio-electric activity consistent. In this study, we combined an energy harvester with MFC (MFC-EH) to make the power-integration convenient and developed an energy self-sustainable wireless sensor system driven by a stable electric power produced by MFC-EH. Additionally, we build the low power application measuring data to be cast by the web in real-time so that it can be quickly and easily accessed through the internet. The proposed system could contribute to improvement of waste treatment and up-cycling technologies in near future.

Dynamic and Static Characteristics of Sensor Tube for Mass Flow Controller (질량유량제어기용 센서튜브의 정특성과 동특성에 관한 연구)

  • 김영수;이상경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.531-537
    • /
    • 2004
  • In this paper, the static and dynamic characteristics in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC. the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations among flow rate, heat generated by heating wire. and sensor location were investigated to find optimized condition. Finally, the relation between sensor voltage through analog digital conversion(ADC) and flow rate in the sensor tube can be represented. Based on this study, static and dynamic characteristics of sensor tube can be used for design of mass flow controller.

Development and Evaluation of a Teensy Microcontroller-based O2 Mass Flow Controller (Teensy 마이크로 컨트롤러 기반 산소 유량 제어기 개발 및 성능평가)

  • Yu, Min Sang;Jang, Yeonsook;Kim, Muhwan;Cho, Sungbo
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.193-200
    • /
    • 2021
  • Flowmeter and oxygen sensors are listed in COVID-19 essential medical devices. This article reports a Teensy microcontroller-based Oxygen mass flow controller (MFC), core part of the oxygen respirator or extracorporeal membrane oxygenation (ECMO). The developed MFC consisting of the microcontroller, MEMS flow sensor, and solenoid valve was able to accurately control 0 to 100 sccm of oxygen flow rate. The pressure of vacuum chamber increased proportionally to the flow rate (0.998 of Pearson correlation coefficient). The experimental results proved that the developed MFC exhibits comparable performance to a commercial MFC in accuracy, settling time, linearity with pressure, and repeatability of oxygen mass flow control. It is expected that this simple and cheap MFC is utilized for oxygen therapy against the severe acute respiratory syndrome coronavirus 2.

A Study of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량흐름 제어기의 센서 튜브에서 열전달현상에 관한 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2003
  • In this paper, the heat transfer phenomena in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC, the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations of flow rate, generated heat by heating wire, sensor location and tube thickness were investigated to find the optimized condition. Based on this study, static and dynamic characteristics of sensor can be used for mass flow controller.

  • PDF

A Study on the Measurement of Stress Intensity Factors for the Fatigue Crack Propagation (피로 균열 진전에 따른 응력확대계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. In this respect, fatigue crack detection and structural health assessment are very important. Currently, various smart materials are used for detecting fatigue crack and measurement of SIFs(Stress Intensity Factors). So, this paper presented a measurement of SIFs using MFC(Micro Fiber Composite) sensor which is the one of the smart material. MFC sensor is more flexible, durable and reliable than other smart materials. The SIFs of Mode I(K I) as well as Mode II(K II) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results.

Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor (Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템)

  • Jaehyun Park;Si-Maek Lee;Beom-Joo Lee;Seon Ju Kim;Hyeong-Min Yoo
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • In this study, aimed at improving the existing acoustic emission sensor for real time monitoring, a macro-fiber composite (MFC) transducer was employed as the acoustic emission sensor in the gas leak detection system. Prior to implementation, structural analysis was conducted to optimize the MFC's design. Consequently, the flexibility of the MFC facilitated excellent adherence to curved pipes, enabling the reception of acoustic emission (AE) signals without complications. Analysis of AE signals revealed substantial variations in parameter values for both high-pressure and low-pressure leaks. Notably, in the parameters of the Fast Fourier Transform (FFT) graph, the change amounted to 120% to 626% for high-pressure leaks compared to the case without leaks, and approximately 9% to 22% for low-pressure leaks. Furthermore, depending on the distance from the leak site, the magnitude of change in parameters tended to decrease as the distance increased. As the results, in the future, not only will it be possible to detect a leak by detecting the amount of parameter change in the future, but it will also be possible to identify the location of the leak from the amount of change.