• Title/Summary/Keyword: MEMS-based chip

Search Result 31, Processing Time 0.04 seconds

Method of Ga removal from a specimen on a microelectromechanical system-based chip for in-situ transmission electron microscopy

  • Yena Kwon;Byeong-Seon An;Yeon-Ju Shin;Cheol-Woong Yang
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

A Consideration on the Process Technology and Application of MEMS to prepare for upcoming MEMS-based technological paradigm (MEMS 기반의 새로운 기술적 패러다임에 대비한 공정 기술 분석 및 적용에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Recently, in the electric, electronic, robotic, and medical industries, a great attention has been paid to the development of MEMS-based smart devices with a compact size and highly intelligency. The MEMS technology is very effective in designing into a compact size and lightweight by combining into one the complex electrical, mechanical, chemical, and biological features which are required by smart devices, and at the same time, in bulk batch manufacturing. Therefore, this study, to prepare for upcoming new MEMS-based technological paradigm, analyzes MEMS processes and then considers its Applications.

MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis (마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작)

  • Kim, Tae-Ha;Kim, Da-Young;Chun, Myung-Suk;Lee, Sang-Soon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.513-519
    • /
    • 2006
  • We developed two kinds of the microchip for application to electrophoresis based on both glass and quartz employing the MEMS fabrications. The poly-Si layer deposited onto the bonding interface apart from channel regions can play a role as the optical slit cutting off the stray light in order to concentrate the UV ray, from which it is possible to improve the signal-to-noise (S/N) ratio of the detection on a chip. In the glass chip, the deposited poly-Si layer had an important function of the etch mask and provided the bonding surface properly enabling the anodic bonding. The glass wafer including more impurities than quartz one results in the higher surface roughness of the channel wall, which affects subsequently on the microflow behavior of the sample solutions. In order to solve this problem, we prepared here the mixed etchant consisting HF and $NH_4F$ solutions, by which the surface roughness was reduced. Both the shape and the dimension of each channel were observed, and the electroosmotic flow velocities were measured as 0.5 mm/s for quartz and 0.36 mm/s for glass channel by implementing the microchip electrophoresis. Applying the optical slit with poly-Si layer provides that the S/N ratio of the peak is increased as ca. 2 times for quartz chip and ca. 3 times for glass chip. The maximum UV absorbance is also enhanced with ca. 1.6 and 1.7 times, respectively.

A Fabrication of IR $CO_2$ Sensor based on the MEMS and Characteristic Evaluation (MEMS 기반의 IR $CO_2$ 센서 제작 및 특성 평가)

  • Kim Shin-Keun;Han Yong-Hee;Moon Sung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.232-237
    • /
    • 2005
  • In this paper, we fabricated $CO_2$ gas sensor based on the MEMS infrared sensor and characterized its electrical and $CO_2$-sensing properties. The fabricated $CO_2$ gas sensor by MEMS technique has many advanges over NDIR(nondispersive) $CO_2$ sensor such as monolithic fabrication, very high selectivity on $CO_2$, low power consumption and compact system. Microbolometer by surface micromachining was fabricated for gas detector and $CO_2$ filter chip by bulk micromachining was fabricated for signal referencing. By using the proposed and fabricated gas sensor, we are expected to measure $CO_2$ concentration more accurately with high reliability.

A Study on the Method of Transferring Metal Specimens for Real-time Transmission Electron Microscopy using Ultrasonic Treatment (초음파 처리 활용 실시간 투과전자현미경 관찰용 금속 시편 전사 방법에 관한 연구)

  • H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2024
  • Micro-electromechanical systems (MEMS) based in-situ heating holders have been developed to enable high resolution imaging of heat treatment analysis. However, unlike the standard 3 mm metal disk specimens used in the furnace-based heating holder and general transmission electron microscopy holder, the MEMS-based in-situ heating holder requires thin specimens that can be penetrated by electrons to be transferred onto the MEMS chip. Previously, focused ion beam milling was used to transfer metal specimens, but it has the disadvantage of being expensive and the risk of specimen damage due to gallium ions. Therefore, in this study, we devised a method of transferring metallic materials by ultrasonic treatment using a transmission electron microscopy specimen made by electro jet polishing. A 3mm electropolished metal disk was placed in an appropriate solution, ultrasonicated, and then drop casted. The transfer of the specimen was successful, but it was confirmed that dislocations were formed inside the specimen due to ultrasonic treatment. This study provides a novel method for transferring metallic materials onto MEMS chips, which is cost-effective and less gallium ion damaging to the specimen. The results of this study can be used to improve the efficiency of heat treatment analysis using MEMS-based in-situ heating holders.

COS MEMS System Design with Embedded Technology (Embedded 기술을 이용한 COS MEMS 시스템 설계)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

MEM Temperature and Humidity Network Sensor for Wire and Wireless Network (유무선 통신용 MEMS 온습도 네트워크 센서)

  • Jung, Woo-Chul;Cha, Boo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.360-361
    • /
    • 2006
  • This paper describes a wire and wireless network sensor for temperature and humidity measurements. The network sensor comprises PLC(Power Line Communication) and RF transmitter(433MHz) for acquiring an internal (on-board) sensor signal, and measured data is transmitted to a main processing unit. The network sensor module is consist of MEMS sensor, 10-bit A/D converter, pre-amp., gain-amp., ADUC812 one chip processor and PLC/RF transmitting unit. The temperature and humidity sensor is based on MEMS piezoelectric membrane structure and is implemented by using dual function sensor for smart home and smart building.

  • PDF

Innovations in Materials Deposition for Plastic Electronics

  • Creagh, Linda T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.673-675
    • /
    • 2005
  • Ink jet printheads are now widely used in manufacturing processes that require precise dispensing of materials. Today, Dimatix manufactures a variety of drop-on-demand ink jet printheads for the industrial printing market, but emerging opportunities present fresh challenges to our technology. In response to requirements for digitally printing on flexible substrates and dispensing novel electronic fluids, we are developing next generation jetting technology based on our three-dimensional silicon MEMS technology with a piezo-driven pumping chamber integrated into the chip structure. This presentation will address the functional and physical design features and properties of Dimatix's MEMS process, its characteristics, reliability and usability. Examples of opportunities and applications for digitally printing electronic fluids on flexible substrates with MEMS-based ink jet technology will be presented.

  • PDF