• Title/Summary/Keyword: MEMS inkjet

Search Result 18, Processing Time 0.029 seconds

Fabrication of the Printed Circuit Board by Direct Photosensitive Etch Resist Patterning (감광성 에칭 레지스트의 잉크젯 인쇄를 이용한 인쇄회로 기판 제작)

  • Park, Sung-Jun;Lee, Ro-Woon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.97-103
    • /
    • 2007
  • A novel selective metallization process to fabricate the fine conductive line based on inkjet printing has been investigated. Recently, Inkjet printing has been widely used in flat panel display, electronic circuits, biochips and bioMEMS because direct inkjet printing is an alternative and cost-effective technology for patterning and fabricating objects directly from design without masks. The photosensitive etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity at ambient temperature. A piezoelectric-driven inkjet printhead is used to dispense 20-30 ${\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. Repeatability of circuitry fabrication is closely related to the formation of steady droplets, adhesion between etching resist and copper substrate. Therefore, the ability to form small and stable droplets and surface topography of the copper surface and chemical attack must be taken into consideration for fine and precise patterns. In this study, factors affecting the pattern formation such as adhesion strength, etching mechanism, UV curing have been investigated. As a result, microscale copper patterns with tens of urn high have been fabricated.

Fatigue Life Analysis on Multi-Stacked Film Under Thermal and Residual Stresses (열응력과 잔류응력하의 다층박막의 피로수명 해석)

  • Park Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-533
    • /
    • 2005
  • Reliability problem in inkjet printhead, one of MEMS devices, is also very important. To eject an ink drop, the temperature of heater must be high so that ink contacting with surface reaches above $280^{o}C$ on the instant. Its heater is embedded in the thin multi-layer in which several materials are deposited. MEMS processes are the main sources of residual stresses development. Residual stress is one of the factors reducing the reliability of MEMS devices. We measured residual stresses of single layers that consist of multilayer. FE analysis is performed using design of experiment(DOE). Transient analysis for heat transfer is performed to get a temperature distribution. And then static analysis is performed with the temperature distribution obtained by heat transfer analysis and the measured residual stresses to get a stress distribution in the structure. Although the residual stress is bigger than thermal stress, thermal stress is more influential on fatigue life.

Development of a new thermal inkjet head with the virtual valve fabricated by MEMS technology (멤스기술을 이용한 가상밸브가 있는 새로운 잉크젯 헤드 개발)

  • Bae, Ki-Deok;Baek, Seog-Soon;Shin, Jong-Woo;Lim, Hyung-Taek;Shin, SuHo;Oh, Yong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1892-1897
    • /
    • 2003
  • A new thermal inkjet printer head on SOI wafer with virtual valve was proposed. It was composed of two rectangular heaters with same size. So we could call it T-jet(Twin jet). T-jet has a lot of merits. It has the advantage of being fabricated with one wafer and is easy to change the size of chamber, nozzle, restrictor and so on. However, above all, It is the best point that T-jet has a virtual valve. And it was manufactured on SOI wafer. The chamber was formed in its upper silicon whose thickness was 40um. The chamber's bottom layer was silicon dioxide of SOI wafer and two heaters were located underneath the chamber's ceiling. And the restirctor was made beside the chamber. Nozzle was molded by process of Ni plating. Ni was 30um thick. Nozzle ejection test was performed by printer head having 56 nozzles in 2 columns with 600NPI(nozzle per inch) and black ink. It measured a drop velocity of 12m/s, a drop volume of 30pl, and a maximum firing frequency of 12KHz for single nozzle ejection. Throwing out the ink drop in whole nozzles at the same time, it was observed that the uniformity of the drop velocity and volume was less than 4%.

  • PDF

Micro Pattern Control of Metal Printing by Piezoelectric Print-head (압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어)

  • Yoon, Shin-Yong;Choi, Geun-Soo;Baek, Soo-Hyun;Chang, Hong-Soon;Seo, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

The Effects of Driving Waveform of Piezoelectric Industrial Inkjet Head for Fime Patterns (산업용 압전 잉크젯 헤드의 구동신호에 따른 특성)

  • Kim, Young-Jae;Yoo, Young-Seuck;Sim, Won-Chul;Park, Chang-Sung;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1621-1622
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristic s were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets up to 20kHz, 4.4m/s and above 8pL at the different applied driving waveforms.

  • PDF

Driving Per Nozzle By Various Waveform Depending On Resonance Frequency In Piezoelectric Inkjet Head (잉크젯 헤드의 공진주파수에 따른 구동파형을 이용한 개별노즐 제어)

  • Kim, Y.J.;Park, C.S.;Sim, W.C.;Kang, P.J.;Yoo, Y.S.;Park, J.H.;Joung, J.W.;Oh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1542-1543
    • /
    • 2007
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Using the water based ink of viscosity of 11.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets through 64 nozzles average velocity of 4.05 m/s with standard deviation of 0.06 m/s and average diameter of $29.2\;{\mu}m$ with standard variation of $0.5\;{\mu}m$.

  • PDF

Studies on Changes of the Droplets by Bubbles in Piezoelectric Inkjet Head (잉크젯 헤드내 발생한 기포에 따른 토출 변화 연구)

  • Yoo, Young-Seuck;Kim, Young-Jae;Sim, Won-Chul;Park, Chang-Sung;Park, Jung-Hoon;Kang, Pil-Joong;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1544-1545
    • /
    • 2007
  • 본 논문은 피에조방식으로 구동하는 MEMS 구조의 산업용 잉크젯 헤드를 제작하여 잉크를 충진하여 토출하는 과정에서 토출이 되지 않는 원인 중 하나인 기포에 대해서 연구하였다. 기포를 직접 관찰하기 위한 방법으로 투명한 유리로 Membrane을 제작하여 기포가 발생하여 거동하는 모습을 관찰하였으며 Actuator가 구동하는 헤드내 기포를 구동 중에 관찰하기 위한 방법으로 LDV(Laser Doffler Vibrometer)를 이용하였다. 그 결과, 구동하면서 발생하는 변위의 미세한 차이를 관찰할 수 있었으며 주파수 data의 차이를 관찰함으로써 기포의 크기에 따른 토출의 양태를 구별할 수 있었다.

  • PDF

Studies on Fine Metal Droplet Jetting using Piezoelectric Inkjet Head (압전 잉크젯 헤드를 이용한 미세금속액적 토출 연구)

  • Park, Chang-Sung;Kim, Young-Jae;Sim, Won-Chul;Park, Jung-Hoon;Kang, Pil-Joong;Yoo, Young-Seuck;Joung, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1550-1551
    • /
    • 2007
  • 노즐 직경 $30\;{\mu}$인 MEMS 압전 잉크젯 헤드를 이용하여 Ag 나노 잉크를 PDMS 처리된 PI(Polyimide) 기판 위에 토출하였다. 구동주파수 5 KHz에서 액적부피 1.5 pl, 속도가 약 4.5 m/s인 액적이 토출 되었다. 인쇄된 액적의 크기는 직경 약 $12\;{\mu}m$이었다. 메니스커스의 거동에 맞춘 구동파형의 입력에 의해 새틀라이트 없는 매우 작은 액적을 토출할 수 있었다.

  • PDF