• Title/Summary/Keyword: MEMS gyro

Search Result 26, Processing Time 0.02 seconds

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

Accelerometer Mixed Algorithm Using Fuzzy Technique

  • Jin, Yong;Cho, Sung-Yun;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.6-141
    • /
    • 2001
  • This paper presents the attitude algorithm using Fuzzy technique to mix gyro information with accelerometer. The attitude angle calculated by the low-cost gyros only increases its error with time rapidly because of the integration process of the algorithm and large sensor error. It is known that the accelerometer output includes the attitude information of a vehicle and its information is more effective during low dynamic maneuver. Therefore it is needed to combine two information appropriately for obtaining the attitude information from low-cost MEMS inertial sensors. Because Fuzzy logic is very effective to make a decision of maneuvering state, it is applied to the mixed algorithm. It is shown by experiment ...

  • PDF

Development of Angular Rate Sensor for an Electronic Stability Program (전자식 주행안전 장치를 위한 각속도 센서 개발)

  • Kim, Byeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.83-90
    • /
    • 2007
  • The vehicle dynamic control system needs to detect the yaw rate of vehicle and a yaw rate sensor is required as a central component. Therefore, A sensor on the basic of the "tuning fork method" for automotive controls is being developed. The sensor was fabricated by the surface micro machining process to miniaturize its size. The sensor output offset is ${\pm}0.37^{\circ}/sec$ in the room temperature. The resonance frequency of the fabricated yaw rate sensor is measured to 5.29kHz for the drive mode. Tests of the sensor demonstrate that its performance is equivalent to that required for implementation of a yaw control system. Vehicle handling and safety are substantially improved using the sensor to implement yaw control.

Study of sand blaster dry etched glass wafer surface for micro device package (샌드 블러스터로 건식 식각한 마이크로 소자 패키지용 유리 웨이퍼의 표면 연구)

  • Kim, Jong-Seok;Nam, Kwang-Woo;Choa, Sung-Hoon;Kwon, Jae-Hong;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.245-250
    • /
    • 2006
  • In this paper, glass cap wafer for MEMS device package is fabricated by using sand blaster dry etcher and Its surface is studied. The surface of dry etched glass is analyzed by using SEM, and many glass particles and micro cracks are observed. If these kind of particles were dropped from glass to the surface of device, It would make critical failure to the operation of device. So, several cleaning and etching methods are induced to remove these kinds of dormant failure mode and optimized condition is found out.

Extended Kalman Filtering for I.M.U. using MEMs Sensors (반도체 센서의 확장칼만필터를 이용한 자세추정)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.469-475
    • /
    • 2015
  • This paper describes about the method for designing an extended Kalman filter to accurately measure the position of the spatial-phase system using a semiconductor sensor. Spatial position is expressed by the correlation of the rotated coordinate system attached to the body from the inertia coordinate system (a fixed coordinate system). To express the attitude, quaternion was adapted as a state variable, Then, the state changes were estimated from the input value which was measured in the gyro sensor. The observed data is the value obtained from the acceleration sensor. By matching between the measured value in the acceleration sensor and the predicted calculation value, the best variable was obtained. To increase the accuracy of estimation, designation of the extended Kalman filter was performed, which showed excellent ability to adjust the estimation period relative to the sensor property. As a result, when a three-axis gyro sensor and a three-axis acceleration sensor were adapted in the estimator, the RMS(Root Mean Square) estimation error in simulation was retained less than 1.7[$^{\circ}$], and the estimator displayed good property on the prediction of the state in 100 ms measurement period.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.