• Title/Summary/Keyword: MEMS Pressure Sensor

Search Result 60, Processing Time 0.024 seconds

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics (PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

Non-invasive acceleration-based methodology for damage detection and assessment of water distribution system

  • Shinozuka, Masanobu;Chou, Pai H.;Kim, Sehwan;Kim, Hong Rok;Karmakar, Debasis;Fei, Lu
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.545-559
    • /
    • 2010
  • This paper presents the results of a pilot study and verification of a concept of a novel methodology for damage detection and assessment of water distribution system. The unique feature of the proposed noninvasive methodology is the use of accelerometers installed on the pipe surface, instead of pressure sensors that are traditionally installed invasively. Experimental observations show that a sharp change in pressure is always accompanied by a sharp change of pipe surface acceleration at the corresponding locations along the pipe length. Therefore, water pressure-monitoring can be transformed into acceleration-monitoring of the pipe surface. The latter is a significantly more economical alternative due to the use of less expensive sensors such as MEMS (Micro-Electro-Mechanical Systems) or other acceleration sensors. In this scenario, monitoring is made for Maximum Pipe Acceleration Gradient (MPAG) rather than Maximum Water Head Gradient (MWHG). This paper presents the results of a small-scale laboratory experiment that serves as the proof of concept of the proposed technology. The ultimate goal of this study is to improve upon the existing SCADA (Supervisory Control And Data Acquisition) by integrating the proposed non-invasive monitoring techniques to ultimately develop the next generation SCADA system for water distribution systems.

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D.;Chen, Min;Oberheim, Thomas E.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect (턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석)

  • 김옥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

Effect of corrugation structure and shape on the mechanical stiffness of the diaphragm

  • Kim, Junsoo;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.273-278
    • /
    • 2021
  • Here, we studied the change in the mechanical stiffness of a diaphragm according to the corrugation pattern. The diaphragm consists of a silicon oxide and nitride double layer; a corrugation pattern was formed by dry etching, and the diaphragm was released by wet etching. The fabrication of the thin film was verified using focused ion beam and scanning electron microscopy images. The mechanical stiffness of the diaphragm was obtained by measuring the surface vibration using a laser Doppler vibrometer while applying external sound pressure. Flat squares, diaphragms with square corrugations, and circular corrugation patterns were measured and compared. The stiffness of the diaphragm with a corrugation structure was found to be smaller than that without a corrugation structure; in particular, circular corrugation showed a better effect because of the high symmetry. Furthermore, the effect of corrugation was theoretically predicted. The proposed corrugated diaphragm showed comparable flexibility with the state-of-the-art MEMS microphone diaphragm.

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Fabrication of Biomimetic MEMS Acoustic Sensor and Analysis of Its Frequency Characteristics (MEMS 기반 생체모사 음향센서 제작 및 주파수 특성 분석)

  • Hur, Shin;Jung, Young-Do;Lee, Young-Hwa;Song, Won-Joon;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.522-528
    • /
    • 2011
  • Artificial basilar membranes made of PVDF(polyvinylidene fluoride) are manufactured using microfabrication processes. The mechanical behavior of PVDF artificial basilar membrane was measured to evaluate its performance as a mechanical frequency analyzer using scanning LDV(laser Doppler vibrometer). The experimental setup consists of the microfabricated artificial basilar membrane, a loud speaker connected to an amplifier for generating acoustic pressure of specific spectral pattern, and a scanning LDV with controlling unit for measuring the displacement of the membrane on the incoming acoustic stimulation. The microfabricated artificial basilar membrane was attached tightly upon a package containing a chamber which can be filled with silicone oil before placed on the experimental setup stage. The experiment results showed that the microfabricated artificial basilar membrane has a property as a mechanical frequency analyzer.

3차원 LTCC 기판을 이용한 압전 압력 센서의 제작 및 연구 특성

  • Heo, Won-Yeong;Hwang, Hyeon-Seok;U, Hyeong-Gwan;Lee, Tae-Yong;Lee, Gyeong-Cheon;Sim, Deung;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.118-118
    • /
    • 2009
  • Low temperature co-fired ceramic (LTCC) is one of promising materials for MEMS structures because it has very good electrical and mechanical properties as well as possibility of making various three dimensional (3D) structures. In this work, piezoelectric pressure sensors based on hybrid LTCC technology were presented. The LTCC diaphragms with thickness of 400 um were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The piezoelectric sensing layer consists of $Pb(ZrTi)O_3$ (PZT) thin film deposited by RF magnetron sputtering method on between top and bottom Au electrodes. The results showed that the fabrication method is very suitable for pressure sensor applications. The PZT films deposited on LTCC diaphragms were successfully grown and were analyzed by using X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM).

  • PDF

Stress characteristics of multilayer polysilicon for the fabrication of micro resonators (마이크로 공진 구조체 제작을 위한 다층 폴리실리콘의 스트레스 특성)

  • Choi, C.A.;Lee, C.S.;Jang, W.I.;Hong, Y.S.;Lee, J.H.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Micro polysilicon actuators, which are widely used in the field of MEMS (Microelectromechanical System) technology, were fabricated using polysilicon thin layers. Polysilicon deposition were carried out to have symmetrical layer structures with a LPCVD (Low Pressure Chemical Vapor Deposition) system, and we have measured physical characteristics by micro test patterns, such as bridges and cantilevers to verify minimal mechanical stress and stress gradient in the polysilicon layers according to the methods of mutilayer deposition, doping, and thermal treatment, also, analyzed the properties of each specimen, which have a different process condition, by XRD, and SIMS etc.. Finally, the fabricated planar polysilicon resonator, symmetrically stacked to $6.5{\mu}m$ thickness, showed Q of 1270 and oscillation ampitude of $5{\mu}m$ under DC 15V, AC 0.05V, and 1000 mtorr pressure. The developed micro polysilicon resonator can be utilized to micro gyroscope and accelerometer sensor.

  • PDF

Micro flow sensor using polycrystalline silicon carbide (다결정 실리콘 카바이드를 이용한 마이크로 유량센서)

  • Lee, Ji-Gong;Lei, Man I;Lee, Sung-Pil;Rajgopal, Srihari;Mehregany, Mehran
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • A thermal flow sensor has been fabricated and characterized, consisting of a center resistive heater surrounded by two upstream and one downstream temperature sensing resistors. The heater and temperature sensing resistors are fabricated from nitrogen-doped(n-type) polycrystalline silicon carbide(poly-SiC) deposited by LPCVD(low pressure chemical vapor deposition) on LPCVD silicon nitride films on a Si substrate. Cavities were etched into the Si substrate from the front side to create suspended silicon nitride membranes carrying the poly-SiC elements. One upstream sensor is located $50{\mu}m$ from the heater and has a sensitivity of $0.73{\Omega}$/sccm with ${\sim}15\;ms$ rise time in a dynamic range of 1000 sccm. N-type poly-SiC has a linear negative temperature coefficient and a TCR(temperature coefficient of resistance) of $-1.24{\times}10^{-3}/^{\circ}C$ from room temperature to $100^{\circ}C$.