• Title/Summary/Keyword: MEMS Gyroscope

Search Result 75, Processing Time 0.044 seconds

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

Feedback Loop Design for Micro Gyroscope

  • Sung, Woon-Tahk;Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.4-39
    • /
    • 2002
  • This paper presents a design and implementation of a PID feedback control loop for micro gyroscope. The feedback control loop improves the gyroscope performance such as linearity, bandwidth, and bias stability for micro gyroscope which is basically a high-Q system and exhibits a low performance with an open loop control. The designed and implemented feed-back control loop is applied to the SNU-Bosch MEMS gyroscope to demonstrate the improvement with the feedback control loop. The bandwidth is improved to 60Hz from 25Hz of open loop control. The linearity becomes 0.5% from 1%. The bias stability is improved to 0.03 deg/sec from 0.06 deg/sec.

  • PDF

Robust Design of the Vibratory Gyroscope with Unbalanced Inner Torsion Gimbal Using Axiomatic Design (공리적 설계를 이용한 비대칭 내부 짐벌을 가진 진동형 자이로스코프의 강건설계)

  • Park, Gyeong-Jin;Hwang, Gwang-Hyeon;Lee, Gwon-Hui;Lee, Byeong-Ryeol;Jo, Yong-Cheol;Lee, Seok-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.914-923
    • /
    • 2002
  • Recently, there has been considerable interest in micro gyroscopes made of silicon chips. It can be applied to many micro-electro-mechanical systems (MEMS): devices for stabilization, general rate control, directional pointing, autopilot systems, and missile control. This paper shows how the mechanical design of the gyroscope can be done using axiomatic design, followed by the application of the Taguchi robust design method to determine the dimensions of the parts so as to accommodate the dimensional variations introduced during manufacturing. Functional requirements are defined twofold. One is that the natural frequencies should have fixed values, and the other is that the system should be robust to large tolerances. According to the Independence Axiom, design parameters are classified into a few groups. Then, the detailed design process is performed fellowing the sequence indicated by the design matrix. The dimensions of the structure are determined to have constant values fur the difference of frequencies without consideration of the tolerances. It is noted that the Taguchi concept is utilized as a unit process of the entire axiomatic approach.

Modeling of non-ideal frequency response in capacitive MEMS resonator (정전 용량형 MEMS 공진기의 비이상적 주파수 응답 모델링)

  • Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • In this paper, modeling of the non-ideal frequency response, especially "notch-and-spike" magnitude phenomenon and phase lag distortion, are discussed. To characterize the non-ideal frequency response, a new electro-mechanical simulation model based on SPICE is proposed using the driving loop of the capacitive vibratory gyroscope. The parasitic components of the driving loop are found to be the major factors of non-ideal frequency response, and it is verified with the measurement results.

Research on MEMS for Motion Measurement of Solar Energy Platform at Sea (해상 태양광 부유체의 거동측정을 위한 MEMS 연구)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.328-330
    • /
    • 2018
  • A floating body with a device that converts solar energy into electrical energy is moved by waves. To evaluate the safety of a floating body, measurement and interpretation of the float motion is required, which is generally based on 6 degrees of freedom motion. The 6 degree of freedom motion can be measured using MEMS (Micro-Electro Mechanical System), which features low power, small size and low cost. The key issue is, meanwhile, the low precision of the MEMS. In this study, the safety evaluation technique by analyzing the behavior of floating body using MEMS was examined. As a result of the study, it was found that the marine floating body can be modeled through the inertial measurement platform using the 3-axis accelerometer and the 3-axis gyroscope, and the safety of the float can be evaluated through this model.

  • PDF

Vibrotactile Space Mouse (진동촉각 공간 마우스)

  • Park, Jun-Hyung;Choi, Ye-Rim;Lee, Kwang-Hyung;Back, Jong-Won;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.337-341
    • /
    • 2008
  • This paper presents a vibrotactile space mouse which use pin-type vibrotactile display modules and a gyroscope chip. This mouse is a new interface device which is not only an input device as an ordinary space mouse but also a tactile output device. It consists of a space mouse which use gyroscope chip and vibrotactile display modules which have been developed in our own laboratory. Lately, by development of vibrotactile display modules which have small size and consume low power, vibrotactile displays are available in small sized embedded systems such as wireless mouses or mobile devices. Also, development of new sensors like miniature size gyroscope by MEMS technology enables manufacturing of a small space mouse which can be used in the air not in a plane. The vibrotactile space mouse proposed in this paper recognizes motion of a hand using the gyroscope chip and transmits the data to PC through Bluetooth. PC application receives the data and moves pointer. Also, 2 by 3 arrays of pin-type vibrotactile actuators are mounted on the front side of the mouse where fingers of a user's hand contact, and those actuators could be used to represent various information such as gray-scale of an image or Braille patterns for visually impared persons.

  • PDF

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

Tuning of Micromachined Gyroscope by the Axial Loads (축방향 하중을 이용한 마이크로 자이로스코프의 고유진동수 조율)

  • Cho, Choong-Hyoun;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.88-91
    • /
    • 2005
  • Although the MEMS element is made through a very precise manufacturing process, usually there is the difference between the modeling design and the actual product. So tuning is required. Through the frequency tuning(changing the characteristics of device), we can calibrate the fabrication error and uncertainty. I'll propose the method of changing the natural frequency through the imposing the axial force on the anchor part to separate the sensing part and the tuning part. When the shape of section is the form of rectangular, the degree of the natural frequencies' change under axial force appears D be different. Applying a tuning force of 30 $\mu$N, the natural frequencies' difference can be reduced by 5 percent.

  • PDF

Study of Failure Mechanisms of Wafer Level Vacuum Packaging for MEMG Gyroscope Sensor (웨이퍼 레벨 진공 패키징된 MEMS 자이로스코프 센서의 파괴 인자에 관한 연구)

  • 좌성훈;김운배;최민석;김종석;송기무
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 2003
  • In this study, we carry out reliability tests and investigate the failure mechanisms of the anodically bonded wafer level vacuum packaging (WLVP) MEMS gyroscope sensor. There are three failure mechanisms of WLVP: leakage, permeation and out-gassing. The leakage is caused by small dimension of the leak channel through the bonding interface and internal defects. The larger bonding width and the use of single crystalline silicon can reduce the leak rate. Silicon and glass wafer itself generates a large amount of outgassing including $H_2O$, $C_3H_5$, $CO_2$, and organic gases. Epi-poly wafer generates 10 times larger amount of outgassing than SOI wafer. The sandblasting process in the glass increases outgassing substantially. Outgassing can be minimized by pre-baking of the wafer in the vacuum oven before bonding process. An optimum pre-baking temperature of the wafers would be between $400^{\circ}C$ and $500^{\circ}C$.

  • PDF

Automatic Gain Control and Charge Amp for MEMS Gyroscope (MEMS 각속도계를 위한 AGC 및 전하증폭기)

  • Park, Kyoung-Jin;Kang, Seong-Mook;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1486-1487
    • /
    • 2008
  • MEMS 각속도계에서 일정한 크기와 주파수를 가지는 진동을 주기 위한 공진기 회로는 각속도계의 성능에 가장 큰 영향을 미친다. 특히 공진기 회로에서 기계구조물의 미세한 진동에 의해 발생되는 수 pico-coulomb의 전하를 증폭하는 전하증폭기와 feedback된 신호를 안정된 크기로 만들어 주는 AGC(Automatic Gain Control) 회로의 정밀도가 MEMS 각속도계의 정밀도를 결정짓는다. 본 논문에서는 전하증폭기의 실제적인 회로의 등가 회로 출력 공식을 실험을 통하여 확인하였고, 입력 신호의 주파수가 MEMS 각속도계의 설계 공진 주파수인 30kHz일 때 0.15 pC 단위까지 측정 가능함을 확인하였다. AGC회로의 경우 simulation을 통하여 동작을 확인하였고, 실제 AGC 회로를 제작하여 실험한 결과, 오실로스코프로 확인하기 어려울 정도로 안정된 출력을 얻었다.

  • PDF