• Title/Summary/Keyword: MEK1/2

Search Result 171, Processing Time 0.023 seconds

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

Comparison of Removal Efficiency of Mn-loaded Natural Zeolites and Red Mud for the Catalytic Ozonation of 2-Butanone

  • Park, Youna;Lee, Jung Eun;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.328-334
    • /
    • 2022
  • For the study of environmental application of natural zeolites (NZ) and red mud (RM), which are discharged from various industrial fields, the catalytic ozonation of 2-butaone (methyl ethyl ketone, MEK) was performed using the Mn-loaded NZ prepared according to the Mn content of 1, 3, 5, 7, and 10 wt%. By the addition of Mn to NZ, the BET (Brunaure-Emmett-Teller) specific surface area of Mn/NZ catalysts decreased while the ratio of Mn3+/[Mn3++Mn4+] intensively increased. Besides, the addition of Mn component to NZ increased the ratio of adsorbed oxygen (Oadsorbed) toward lattice oxygen (Olattice), Oadsorbed/Olattice from 0.076 of NZ to 0.465 of 10 wt% Mn/NZ according to the amount of Mn. It is known that the proportion of two species, Mn3+ and Oadsorbed, would greatly affect the catalytic activity. However, the balancing between the paired species, Mn3+ vs. Mn4+ and Oadsorbed vs. Olattice might be more essential for the catalytic ozonation of MEK at room temperature. Among the Mn-loaded NZ catalysts, the 3 wt% Mn/NZ showed the best activity for the removal of MEK and ozone. The 5, 7, and 10 wt% Mn/NZ catalysts are slightly inferior to the 3 wt% Mn/NZ. Compared to the pristine NZ, the Mn/NZ catalysts showed better activity for the catalytic ozonation of MEK. In addition, the 3 wt% Mn/NZ was confirmed to have the most available acid sites among them by the analysis of NH3-TPD (temperature programmed desorption). This might be the major reason for the best catalytic activity of 3 wt% Mn/NZ together with the adjusted distribution ratios of Mn3+/Mn4+ and Oadsorbed/Olattice. Considering the result of 3 wt% Mn/NZ, the 3 wt% Mn/RM was prepared to perform the catalytic activity for the removal of MEK and ozone, but the efficiency of 3 wt% Mn/RM was significantly lower than that of the 3 wt% Mn/NZ.

Molecular Mechanisms of Generation for Nitric Oxide and Reactive Oxygen Species, and Role of the Radical Burst in Plant Immunity

  • Yoshioka, Hirofumi;Asai, Shuta;Yoshioka, Miki;Kobayashi, Michie
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.321-329
    • /
    • 2009
  • Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and $H_2O_2$ accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

The Src/PLC/PKC/MEK/ERK Signaling Pathway Is Involved in Aortic Smooth Muscle Cell Proliferation induced by Glycated LDL

  • Cho, Hyun-Mi;Choi, Sung Hee;Hwang, Ki-Chul;Oh, Sue-Young;Kim, Ho-Gyung;Yoon, Deok-Hyo;Choi, Myung-Ae;Lim, So Yeon;Song, Heesang;Jang, Yangsoo;Kim, Tae Woong
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood. We examined the effects of native LDL and glycated LDL on the extracellular signal-regulated kinase (ERK) pathway. Addition of native and glycated LDL to rat aorta SMCs (RASMCs) stimulated ERK phosphorylation. ERK phosphorylation was not affected by exposure to the $Ca^{2+}$ chelator BAPTA-AM but inhibition of protein kinase C (PKC) with GF109203X, inhibition of Src kinase with PP1 ($5{\mu}M$) and inhibition of phospholipase C (PLC) with U73122/U73343 ($5{\mu}M$) all reduced ERK phosphorylation in response to glycated LDL. In addition, pretreatment of the RASMCs with a cell-permeable mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059, $5{\mu}M$) markedly decreased ERK phosphorylation in response to native and glycated LDL. These findings indicate that ERK phosphorylation in response to glycated LDL involves the activation of PKC, PLC, and MEK, but is independent of intracellular $Ca^{2+}$.

Enhancement of Tumor Response by MEK Inhibitor in Murine HCa-I Tumors (C3H/HeJ 마우스 간암에서 MEK 억제제에 의한 방사선 감수성 향상 효과)

  • Kim, Sung-Hee;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • Purpose: Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protin kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Materials and Methods: Murine hepatocarcinoma, HCa-I is known to be highly radioresistant with a TCD50 (radiation dose yield in $50\%$ cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case on radioresistant tumor. C3H/HeJ mice hearing $7.5\~8\;mm$ HCa-I, were treated with PD98059(intratumoral injection of $0.16\;\mug/50\;\mul$). Results: Downregulation on ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to Increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number on apoptotic nuclei in 1000 nuclei X100) was $1.2\%$ in the case of radiation treatment alone, $0.9\%$ in the case of drug treatment alone and $4.9\%,\;5.3\%$ in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed upregulation of p53, p$p21^{WAF1/CIP1}\;and\;Bcl-X_s$ in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as $Bcl-X_L4, Bax and Bcl-2 were changed to a lesser extent. Conclusion: The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment.

Paraquat Induces Apoptosis through Cytochrome C Release and ERK Activation

  • Seo, Hong Joo;Choi, Sang Joon;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • Paraquat has been suggested to induce apoptosis by generation of reactive oxygen species (ROS). However, little is known about the mechanism of paraquat-induced apoptosis. Here, we demonstrate that extracellular signal-regulated protein kinase (ERK) is required for paraquat-induced apoptosis in NIH3T3 cells. Paraquat treatment resulted in activation of ERK, and U0126, inhibitors of the MEK/ERK signaling pathway, prevented apoptosis. Moreover, paraquat-induced apoptosis was associated with cytochrome C release, which could be prevented by treatment with the MEK inhibitors. Taken together, our findings suggest that ERK activation plays an active role in mediating paraquat-induced apoptosis of NIH3T3 cells.

Clinical implications of the Hippo-YAP pathway in multiple cancer contexts

  • Kim, Han-Byul;Myung, Seung-Jae
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • The Hippo pathway plays prominent and widespread roles in various forms of human carcinogenesis. Specifically, the Yes-associated protein (YAP), a downstream effector of the Hippo pathway, can lead to excessive cell proliferation and the inhibition of apoptosis, resulting in tumorigenesis. It was reported that the YAP is strongly elevated in multiple types of human malignancies such as breast, lung, small intestine, colon, and liver cancers. Recent work indicates that, surprisingly, Hippo signaling components' (SAV1, MST1/2, Lats1/2) mutations are virtually absent in human cancer, rendering this signaling an unlikely candidate to explain the vigorous activation of the YAP in most, if not all human tumors and an activated YAP promotes the resistance to RAF-, MAPK/ERK Kinase (MEK)-, and Epidermal growth factor receptor (EGFR)-targeted inhibitor therapy. The analysis of YAP expressions can facilitate the identification of patients who respond better to an anti-cancer drug treatment comprising RAF-, MEK-, and EGFR-targeted inhibitors. The prominence of YAP for those aspects of cancer biology denotes that these factors are ideal targets for the development of anti-cancer medications. Therefore, our report strongly indicates that the YAP is of potential prognostic utility and druggability in various human cancers.

Effects of Citrus sunki Peel Extract on Matrix Metalloproteinase-1 Expression (진귤 과피 추출물의 MMP-1 발현조절 효과)

  • Han, Gu-Seul;Lee, Sun-Ryung
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1553-1556
    • /
    • 2013
  • Flavonoids are one of the major components found in the peels of citrus fruits. Present evidence has suggested that polymethoxyflavonoids, including nobiletin and tangeretin isolated from Citrus sunki, have many biological properties, such as anti-inflammatory, anti-oxidant, and anti-obesity capabilities. Here, we investigated the effect of Citrus sunki peel extract and its possible mechanisms on oxidative stress-induced MMP-1 expression, a major marker of skin photoaging. $H_2O_2$ induced MMP-1 expression in a dose- and time-dependent manner. Extract of Citrus sunki peel (1-25 ${\mu}g/ml$) dose-dependently decreased MMP-1 mRNA levels. When $H_2O_2$ was combined with Citrus sunki peel extract, the phosphorylation of ERK was further decreased compared to a single treatment with $H_2O_2$ alone. Moreover, U0216, an MEK inhibitor, markedly prevented the production of MMP-1. These data suggest that Citrus sunki peel extract has demonstrated protective activity against oxidative damage on MMP-1 expression, and ERK MAP kinase may be involved.

Lab sacle의 섬유상담체를 이용한 VOCs 제거

  • Jang, Jeong-Gyun;Choe, Hwan-Seok;Park, Ju-Yeong;Cha, Jin-Myeong;O, Min-Ha;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.552-555
    • /
    • 2001
  • This work reported concerns the removal of mixtures of methyl ethyl ketone (MEKJ, methyl isobutyl ketone (MIBK) and BTXs, which find wide application as industrial solvents, using the biofilter by the microbial consortium, The biofilter was constructed from acryl columns and was 400 mm in length and 55 mm in diameter and the height of fibrous packing material which made of PVC was 160 111111, 8 seconds of the retention time, pH 6.5 - 7.5 and the initial inlet concentration of MEK, MIBK and BTXs were 220 ppm. The removal efficiency of the gaseous mixtures was relatively low during the initial 2 days after inoculum of the microbial consortium, after 3 days, however, the efficiency was increased remarkably. In this study, The removal efficiency of the biofilter for the mixtures show the high degree from one day after inoculum of the microbial consortium, having no relation to the fluctuation of the inlet concentration of MEK, MIBK and BTXs.

  • PDF

Combined Toxic Effects of Polar and Nonpolar Chemicals on Human Hepatocytes (HepG2) Cells by Quantitative Property - Activity Relationship Modeling

  • Kim, Ki-Woong;Won, Yong Lim;Park, Dong Jin;Kim, Young Sun;Jin, Eun Sil;Lee, Sung Kwang
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.337-343
    • /
    • 2016
  • We determined the toxicity of mixtures of ethyl acetate (EA), isopropyl alcohol (IPA), methyl ethyl ketone (MEK), toluene (TOL) and xylene (XYL) with half-maximal effective concentration ($EC_{50}$) values obtained using human hepatocytes cells. According to these data, quantitative property-activity relationships (QPAR) models were successfully proposed to predict the toxicity of mixtures by multiple linear regressions (MLR). The leave-one-out cross validation method was used to find the best subsets of descriptors in the learning methods. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP) and flash point (FP) were observed between the single substances and the mixtures. The $EC_{50}$ of the mixture of EA and IPA was significantly lower than that of contained TOL and XYL. The mixture toxicity was related to the mixing ratio of MEK, TOL and XYL (MLR equation $EC_{50}=3.3081-2.5018{\times}TOL-3.2595{\times}XYL-12.6596{\times}MEK{\times}XYL$), as well as to BP, SG, VP and FP (MLR equation $EC_{50}=1.3424+6.2250{\times}FP-7.1198{\times}SG{\times}FP-0.03013{\times}rVP{\times}FP$). These results suggest that QPAR-based models could accurately predict the toxicity of polar and nonpolar mixtures used in rotogravure printing industries.