• Title/Summary/Keyword: MEK/Erk signaling

Search Result 73, Processing Time 0.031 seconds

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.

Protective Effects of Hwansodan(Huanshao-dan) Water Extract in Serum Deprivation-induced Apoptosis of PC12 Cells (환소단이 영양혈청 결핍성 PC12 신경세포의 apoptosis에 미치는 영향)

  • 임준식;김명선;소홍섭;이지현;한상혁;허윤;박래길;문병순
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.64-72
    • /
    • 2000
  • Objectives : This study was designed to investigate the neuroprotective effect of Hwansodan(Huanshao-dan) on the apoptosis induced by withdrawal of neurotrophic support. Methods : PCl2 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. The viability of cells was measured by MTT assay. We used DNA fragmentation and caspase 3-like protease activation assay. Results : The water extract of Hwansodan(Huanshao-dan) significantly showed protective effects on serum and glucose deprivation-induced apoptotic death. Hwansodan(Huanshao-dan) also prevents DNA fragmentation and caspase 3-like protease activation, representing typical neuronal apoptotic phenomena in PCl2 pheochromocytoma cells and induces tyrosine phosphorylation of proteins around 44 kDa, which was identified as ERK1 with electrophoretic gel mobility shift by Western blot. In addition, MAPK kinase(MEK) inhibitor PD98059 and Ras inactivator, ${\alpha}-hydroxyfarnesylphosphonic$ acid attenuated the neuroprotective effects of Hwansodan(Huanshao-dan) in serum-deprived PCl2 cells. Conclusions : These results indicate that Ras/MEK/ERK signaling pathway plays a key role in neuroprotective effects of Hwansodan(Huanshao-dan) in serum-deprived PCl2 cells. Taken together, we suggest the possibility that Hwansodan(Huanshao-dan) might provide a neurotrophic-like activity in PCl2 cells.

  • PDF

The Src/PLC/PKC/MEK/ERK Signaling Pathway Is Involved in Aortic Smooth Muscle Cell Proliferation induced by Glycated LDL

  • Cho, Hyun-Mi;Choi, Sung Hee;Hwang, Ki-Chul;Oh, Sue-Young;Kim, Ho-Gyung;Yoon, Deok-Hyo;Choi, Myung-Ae;Lim, So Yeon;Song, Heesang;Jang, Yangsoo;Kim, Tae Woong
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood. We examined the effects of native LDL and glycated LDL on the extracellular signal-regulated kinase (ERK) pathway. Addition of native and glycated LDL to rat aorta SMCs (RASMCs) stimulated ERK phosphorylation. ERK phosphorylation was not affected by exposure to the $Ca^{2+}$ chelator BAPTA-AM but inhibition of protein kinase C (PKC) with GF109203X, inhibition of Src kinase with PP1 ($5{\mu}M$) and inhibition of phospholipase C (PLC) with U73122/U73343 ($5{\mu}M$) all reduced ERK phosphorylation in response to glycated LDL. In addition, pretreatment of the RASMCs with a cell-permeable mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059, $5{\mu}M$) markedly decreased ERK phosphorylation in response to native and glycated LDL. These findings indicate that ERK phosphorylation in response to glycated LDL involves the activation of PKC, PLC, and MEK, but is independent of intracellular $Ca^{2+}$.

Effect of Saussurea Lappa Root Extract on Proliferation and Hair Growth-related Signal Pathway in Human Hair Follicle Dermal Papilla Cells (당목향 뿌리 추출물의 인체 모유두세포 증식 및 모발 성장 관련 신호전달에 미치는 영향)

  • Chio, Hyoung-Chul;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.647-652
    • /
    • 2021
  • In this study, Saussurea Lappa roots were extracted using ethanol and n-hexane, and also the effects on proliferation of human hair dermal papilla cells and fibroblast and related signaling pathway were evaluated. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay was conducted for cell proliferation effect of Saussurea Lappa root extract, and extracellular signal-related kinase (ERK), serine/threonine protein kinase (Akt), wingless-related integration site (Wnt)/𝛽-catenin signaling pathway, and 5𝛼-reductase expression through western blot analysis were measured. Saussurea Lappa root extract significantly increased human hair dermal papilla cells and propagation of fibroblast, promoted phosphorylation of ERK and Akt that get involved in cell proliferation. Additionally, Saussurea Lappa root extract significantly decreased promotion of Akt phosphorylation and cell proliferation by MEK/ERK inhibitor PD98059 and PI3K/Akt inhibitor LY294002. Also, Saussurea Lappa root extract induced intranuclear 𝛽-catenin accumulation by promoting phosphorylation of 𝛽-catenin (Ser552, 675) through phosphorylation of GSK-3𝛽 (Ser9), and suppressed activation of 5𝛼-reductase type I and II. Overall, Saussurea Lappa root induces cell proliferation through vitalization of ERK and Akt route of human hair dermal papilla cells and fibroblast and apoptosis defense mechanism, and can be helpful in hair loss prevention and hair growth by vitalizing the 𝛽-catenin signaling pathway and inhibiting activation of 5𝛼-reductase, which can be used as a potential hair care products.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

PD98059 Induces the Apoptosis of Human Cervical Cancer Cells by Regulating the Expression of Bcl2 and ERK2

  • Yang, Eun-Ju;Chang, Jeong-Hyun
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.291-295
    • /
    • 2011
  • PD98059 is the specific inhibitor of extracellular signaling-regulated kinase (ERK) kinase (MEK). ERK is involved in a mitogen-activated protein kinase (MAPK) cascade controlling cell growth and differentiation. Although the inhibition of ERK is known to induce cell death in various cell lines, this effect is still controversial and the role of PD98059 on the death of HeLa $S_3$ cells, a subclone of the cervical cancer cell line, is not well understood. The apoptosis of HeLa $S_3$ cells increased after the treatment of 50 ${\mu}M$ PD98059. The induction of apoptosis by PD98059 was occurred in a time- and a dose-dependent manners. The expression of Bcl-2 was reduced in accordance with decrease of ERK2 expression. Taken together, these results indicate that PD98059 has a cytotoxicity in HeLa $S_3$ cells and it may be used as a potential target for the treatment of cervical cancer.

Tilianin Inhibits MUC5AC Expression Mediated Via Down-Regulation of EGFR-MEK-ERK-Sp1 Signaling Pathway in NCI-H292 Human Airway Cells

  • Song, Won-Yong;Song, Yong-Seok;Ryu, Hyung Won;Oh, Sei-Ryang;Hong, JinTae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In the human airway, mucus exists to protect the respiratory system as a primary barrier of the innate immune system. However, hyperexpressed mucus limits airflow, resulting in a decrease of lung function. Among more than 20 mucin family members, MUC5AC and MUC5B are major glycoproteins in human airway mucus. The epidermal growth factor receptor (EGFR) signaling pathway is one of the mechanisms of these mucins expression and specificity protein-1 (Sp1) transcription factor is the downstream signal of this pathway, playing pivotal roles in mucin expression. Even though there are some drugs for treating mucus hypersecretion, no drug has proven effects on humans. We found that the flavonoid tilianin regulated MUC5AC expression and also inhibited Sp1 phosphorylation. In this study, we investigated how tilianin would modulate EGFR signaling and regulate mucin production. In conclusion, tilianin inhibited MUC5AC expression mediated via modulating the EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway epithelial cells. This study may provide the basis for the novel treatment of mucus hypersecretion.

Induction of Apoptosis in Human Leukemic Cell Lines by Diallyl Disulfide via Modulation of EGFR/ERK/PKM2 Signaling Pathways

  • Luo, Nian;Zhao, Lv-Cui;Shi, Qing-Qiang;Feng, Zi-Qiang;Chen, Di-Long;Li, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3509-3515
    • /
    • 2015
  • Background: Diallyl disulfide (DADS) may exert potent anticancer action both in vitro and in vivo. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between DADS and pyruvate kinase (PKM2). Materials and Methods: $KG1{\alpha}$, a leukemia cell line highly expressing PKM2 was used with a cell counting kit (CCK)-8 and flow cytometry (FCM) to investigate the effects of DADS. Relationships between PKM2 and DADS associated with phosphorylation of EGFR, ERK1/2 and MEK, were assessed by western blot analysis. Results: In $KG1{\alpha}$ cells highly expressing PKM2, we found that DADS could affect proliferation, apoptosis and EGFR/ERK/PKM2 signaling pathways, abrogating EGF-induced nuclear accumulation of PKM2. Conclusions: These results suggested that DADS suppressed the proliferation of $KG1{\alpha}$ cells, providing evidence that its proapoptotic effects are mediated through the inhibition of EGFR/ERK/PKM2 signaling pathways.

Role of TAZ in Lysophosphatidic Acid-Induced Migration and Proliferation of Human Adipose-Derived Mesenchymal Stem Cells

  • Mo, Won Min;Kwon, Yang Woo;Jang, Il Ho;Choi, Eun Jung;Kwon, Sang Mo;Kim, Jae Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.354-361
    • /
    • 2017
  • Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.