• Title/Summary/Keyword: MEE

Search Result 5,984, Processing Time 0.026 seconds

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.

The Study on the Way of Radioactive Waste Disposal in China

  • Keyan Teng;Hao Peng;Caixia Lv;Han Wu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.533-540
    • /
    • 2022
  • Because of the massive development of nuclear power plants in China in recent years, China is facing the challenge of radioactive waste disposal. China has established complete regulatory requirements for radioactive waste disposal, but it also has encountered problems and challenges in low-level radioactive waste disposal in terms of management, selection of disposal facility sites, and implementation of a site selection plan. Three low-level radioactive waste disposal facilities that have been operated in China are described, and their activity limits, locations, and capacities are also outlined. The connotations of "regional" and "centralized" disposal policies are discussed in light of the characteristics of the radioactive waste. The characteristics and advantages of the regional and centralized disposal policies are compared. It is concluded that the regional disposal policy adopted in 1992 can no longer meet the current disposal needs, and China should adopt a combination of the two disposal policies to solve the problem of radioactive waste disposal.

Performance Evaluation of the Screw-Type Oil Expeller for Extracting Mee (Madhuca longifolia) Oil

  • Bandara, D.M.S.P.;Dissanayake, C.A.K.;Dissanayake, T.M.R.;Rathanayake, H.M.A.P.;Senanayake, D.P.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Purpose: Mee (Madhuca longifolia) is an economically important tree growing throughout Sri Lanka. Its importance is mainly attributed to its oil with high nutritional and medicinal values. However, an inefficient extraction method limits its use. This study revealed the possibility of extracting oil from mee seeds by using a screw-type oil expeller. Methods: A popular screw-type oil expeller was used in the experiment. Extract bar clearance and speeds of the main spiral shaft were altered to increase the oil expelling efficiency of the machine. The quality of refined oil at the optimum oil yield was determined by measuring the refractive index, saponification value, iodine value, unsaponifiable matter, free fatty acid, and specific gravity. Results: An optimum yield of 35% oil was obtained when the machine capacity was 30 kg/h and energy consumption was 0.13 kWh/kg. This optimum machine condition was observed at an extract bar clearance of 0.5 mm and a main spiral shaft speed of 90 rpm. The refractive index, saponification value, iodine value, unsaponifiable matter, free fatty acid, and specific gravity of the oil were 1.4, 203, 59, 3.5%, 0.2%, and 0.907 g/cm3 respectively. Color of the mee oil was closer to yellow, which is revealed by the lightness value (L) of 24.93 and positive value (b) of 11.81. Conclusion: The screw-type oil expeller can be used for economically extracting mee oil on a commercial scale.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

International Environmental Efficiency with CO2 Using Meta Stochastic Frontier Analysis (메타확률 프런티어를 사용한 CO2의 국제환경효율)

  • Li, Ziyao;Kang, Sangmok
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.471-501
    • /
    • 2021
  • We measure Environmental Efficiency (EE) based on CO2 in four income groups from 1998 to 2018, using the Meta Stochastic Frontier Analysis method by Input Distance Function. Our results showed that economic growth and energy consumption would increase carbon dioxide emissions, and increasing labor and capital input will reduce it. Moreover, we compared Group Environmental Efficiency (GEE), Meta Environmental Efficiency (MEE), and Environmental Gap Ratio (EGR). The results showed that GEEs were be overestimated. Furthermore, the MEE showed a downward trend during this period. The lower-middle-income group had the highest EGR performance. High-income and upper-middle-income groups showed less efficiency in MEE and EGR. To improve environmental efficiency, we must reduce fossil fuels and find more scientific and technological ways to solve existing environmental problems as soon as possible.

A survey on nursing students' self-confidence in fundamental nursing procedures (기본간호행위에 대한 간호학생들의 자신감 조사연구 -조선대학교 병설 간호전문학교 학생을 대상으로-)

  • Kim Mee Ra
    • The Korean Nurse
    • /
    • v.15 no.2 s.82
    • /
    • pp.46-55
    • /
    • 1976
  • A Survey On Nursing Students'' Self-confidence In Fundamental Nursing Procedures Mee-Ra Kim(Junior College of Nursing Attached Chosun University) The clinical or on-the-spot practices in fundamental nursing procedures are directly related to the self-conf

  • PDF

Developing System and Site Level Framework of Management Effectiveness Evaluation for the Forest Genetic Resources Reserve in Korea (산림유전자원보호구역의 관리효과성 평가를 위한 시스템 및 현장 수준의 평가틀 개발)

  • Lee, Dong-Ho;Kang, Mihee;Kim, Seong-il
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.472-485
    • /
    • 2016
  • The main purpose of this research was to develop a multi-level evaluation framework for the management effectiveness of the Forest Genetic Resources Reserve (FGRR) at both the system level and the site level. The initial system level Management Effectiveness Evaluation (MEE) framework for FGRR was developed based on the MEE Framework designed by IUCN WCPA and MEE framework for Korean National Parks that was designed jointly by IUCN, the Korean Ministry of Environment, and the Korea National Park Service. Several indicators were added or modified considering characteristics of the FGRR. The final system level MEE frameworks consisted of 6 categories with total of 39 criteria and 42 indicators based on expert survey results. The initial site-level MEE framework was developed based on the site level MEE framework for Korean National Parks that was designed jointly by IUCN, the Korean Ministry of Environment, and the Korea National Park Service. The final site level MEE framework consisted of 6 categories with total of 16 criteria and 40 indicators based on both an expert survey and an intensive workshop with the officers in charge of managing the FGRR from the Korea Forest Service and local governments.