• Title/Summary/Keyword: MECS

Search Result 33, Processing Time 0.023 seconds

Performance Comparison of Task Partitioning with Offloading and Migration in MEC (MEC 환경에서 오프로딩과 마이그레이션을 이용한 태스크 파티셔닝 기법의 성능비교)

  • Moon, Sungwon;Koo, Seolwon;Lim, Yujin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.100-103
    • /
    • 2021
  • 5G 의 발전과 함께 차량과 IT 통신 기술을 융합한 어플리케이션들이 급증하면서 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 등장했다. 낮은 지연시간 안에 계산 집약적인 서비스들을 제공하기 위해 단독적인 MECS 서버(MECS)에서의 수행이 아닌 다수의 MECS 에서 동시에 연산을 수행할 수 있도록 태스크를 파티셔닝하는 기법이 주목받고 있다. 특히 차량이 다수의 MECS 로 태스크를 파티셔닝하여 오프로딩하는 기법과 하나의 MECS 로 오프로딩한 후 다른 MECS 들로 파티셔닝하여 마이그레이션하는 기법들이 연구되고 있다. 본 논문에서는 오프로딩과 마이그레이션을 이용한 파티셔닝 기법들을 서비스 지연시간과 차량의 에너지 소비량 측면에서 성능을 비교 분석을 하였다.

Dynamic characteristics of cable vibrations in a steel cable-stayed bridge using nonlinear enhanced MECS approach

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.37-66
    • /
    • 2008
  • This paper focuses on the nonlinear vibrations of stay cables and evaluates the dynamic characteristics of stay cables by using the nonlinear enhanced MECS approach and the approximate approach. The nonlinear enhanced MECS approach is that both the girder-tower vibrations and the cable vibrations including parametric cable vibrations are simultaneously considered in the numerical analysis of cable-stayed bridges. Cable finite element method is used to simulate the responses including the parametric vibrations of stay cables. The approximate approach is based on the assumption that cable vibrations have a small effect on girder-tower vibrations, and analyzes the local cable vibrations after obtaining the girder-tower responses. Under the periodic excitations or the moderate ground motion, the differences of the responses of stay cables between these two approaches are evaluated in detail. The effect of cable vibrations on the girder and towers are also discussed. As a result, the dynamic characteristics of the parametric vibrations in stay cables can be evaluated by using the approximate approach or the nonlinear enhanced MECS approach. Since the different axial force fluctuant of stay cables in both ends of one girder causes the difference response values between two approach, it had better use the nonlinear enhanced MECS approach to perform the dynamic analyses of cable-stayed bridges.

Oswestry Disability Analysis of Fuzzy Control Multi-cup Electric Cupping System

  • Kim, Jong-Chan;Ko, Jae-Sub;Wei, Tung-Shuen;Kim, Chee-Yong;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.207-217
    • /
    • 2015
  • A multi-cup electric cupping system (MECS) was proposed, based on the ancient cupping method. MECS consisted of several cups that could be used simultaneously to treat 85 lumbago patients. Each cup was equipped with its own pump and pressure-monitoring system. The vacuum pressure of the cups was controlled using fuzzy logic. Through automated control of the vacuum pressure, long-term relief of muscle tightness was achieved. To develop a scientific foundation for this alternative treatment, we compared the Oswestry Disability Index (ODI) scores from conventional basic cupping to the ODI scores for our proposed MECS. The ODI scores using MECS decreased from $11.71{\pm}1.61$ before treatment to $4.81{\pm}1.48$ and $1.87{\pm}1.61$ after three and five treatments, respectively. The improvement rate in the ODI scores using MECS after three treatments was higher than that achieved by basic cupping. These results, combined with the convenience offered by enhanced information technology and fuzzy logic capabilities, should increase the efficiency of this device, and facilitate the opportunity to further explore the potential of Oriental medical practices.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells

  • Islam, Md Aminul;Noguchi, Yoko;Taniguchi, Shin;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1006-1013
    • /
    • 2021
  • Objective: Cells have increased susceptibility to activation of apoptosis when suffering heat stress (HS). An effective supplementation strategy to mimic heat-induced apoptosis of bovine mammary epithelial cells (MECs) is necessary to maintain optimal milk production. This study aimed to investigate possible protective effects of the anti-apoptotic activity of 5-aminolevulinic acid (5-ALA) against HS-induced damage of bovine MECs. Methods: Bovine MECs were pretreated with or without 5-ALA at concentrations of 10, 100, and 500 µM for 24 h followed by HS (42.5℃ for 24 h and 48 h). Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress genes. Results: We found that 5-ALA induces cytoprotection via inhibition of apoptosis markers after HS-induced damage. Pretreatment of bovine MECs with 5-ALA resulted in dramatic upregulation of mRNA for nuclear factor erythroid-derived 2-like factor 2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, all of which are antioxidant stress genes. Moreover, 5-ALA pretreatment significantly suppressed HS-induced ER stress-associated markers, glucose-regulated protein 78, and C/EBP homologous protein expression levels. Conclusion: 5-ALA can ameliorate the ER stress in heat stressed bovine MEC via enhancing the expression of antioxidant gene.

Central mucoepidermoid carcinoma of the maxilla with unusual ground glass appearance and calcifications: A case report

  • Suresh, Dirasantchu;Raviraj, Jayam;Vijaykumar, Bokkasam;Suman, Sreeram Venkata;Suneel, Kumar Venkata;Amrutha, Kodadala
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.161-164
    • /
    • 2014
  • Mucoepidermoid carcinomas (MECs) arising within the jaws as primary central bony lesions are termed central MECs. Central MECs are extremely rare, comprising 2-3% of all mucoepidermoid carcinomas. We herein report a rare case of central MEC of the maxilla in a 52-year-old male whose plain radiographs showed a "ground glass" pattern and computed tomographic images, a hypodense mass with numerous calcifications. To the best of our knowledge, this is the first report of central MEC showing a "ground glass" appearance.

A Study on Core Problems Deduction and Selection of Solving Direction Using TP : Focus on Marine Corps's Supply Chain (TP를 이용한 개선된 공급체인의 핵심문제 도출 및 해결방향 선정에 관한 연구 : 해병대 공급체인을 중심으로)

  • Kim, Gab-Joo;Goh, Hyun-Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.108-115
    • /
    • 2008
  • Future war needs a lot of changes for military organization. In this circumstance, it is importance the role of the Military Equipment Command Separation (MECS). In case of Korea Marine Corps, in spite of being MECS, Marine Corps has formed supply chain depended on Amy and Navy even it. Thus we proposed a new SCM of Marine Corps with Sense and Response concept. There are many problems and arguments to implement of new SCM. Therefore it is essential solving the problems but we don't know core problems and right solving directions. So, In this study, we present core problems deduction and selection of solving direction using TP(Thinking Process).

Role of membranes in bioelectrochemical systems

  • Kokabian, Bahareh;Gude, Veera Gnaneswar
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.53-75
    • /
    • 2015
  • This paper provides an overview of the role of membranes in bioelectrochemical systems (BESs). Bioelectrochemical systems harvest clean energy from waste organic sources by employing indigenous exoelectrogenic bacteria. This energy is extracted in the form of bioelectricity or valuable biofuels such as ethanol, methane, hydrogen, and hydrogen peroxide. Various types of membranes were applied in these systems, the most common membrane being the cation exchange membrane. In this paper, we discuss three major bioelectrochemical technology research areas namely microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The operation principles of these BESs, role of membranes in these systems and various factors that affect their performance and economics are discussed in detail. Among the three technologies, the MFCs may be functional with or without membranes as separators while the MECs and MDCs require membrane separators. The preliminary economic analysis shows that the capital and operational costs for BESs will significantly decrease in the future due mainly to differences in membrane costs. Currently, MECs appear to be cost-competitive and energy-yielding technology followed by MFCs. Future research endeavors should focus on maximizing the process benefits while simultaneously minimizing the membrane costs related to fouling, maintenance and replacement.

Optimization of Bioelectrochemical Anaerobic Digestion Process Using Response Surface Methodology (반응표면분석법을 활용한 생물전기화학적 혐기성 소화 공정의 최적화)

  • LEE, CHAE-YOUNG;CHOI, JAE-MIN;HAN, SUN-KI
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • This study was performed to optimize the integrated anaerobic digestion (AD) and microbial electrolysis cells (MECs) for the enhanced hydrogen production. The optimum operational conditions of integrated AD and MECs were obtained using response surface methodology. The optimum substrate concentration and operational pH were 10 g/L and 6.8, respectively. In the confirm test, 1.43 mol $H_2/mol$ hexose was achieved, which was 2.5 times higher than only AD. After 40 to 60 hour at seeding, the volatile fatty acids (VFAs) in reactor of AD were not changed. However the VFAs of reactor of AD-MECs were reduced by 61.3% (acetate: 76.4%, butyrate: 50.0%, lactate: 55.0%).