Browse > Article
http://dx.doi.org/10.12989/mwt.2015.6.1.053

Role of membranes in bioelectrochemical systems  

Kokabian, Bahareh (Department of Civil and Environmental Engineering, Mississippi State University)
Gude, Veera Gnaneswar (Department of Civil and Environmental Engineering, Mississippi State University)
Publication Information
Membrane and Water Treatment / v.6, no.1, 2015 , pp. 53-75 More about this Journal
Abstract
This paper provides an overview of the role of membranes in bioelectrochemical systems (BESs). Bioelectrochemical systems harvest clean energy from waste organic sources by employing indigenous exoelectrogenic bacteria. This energy is extracted in the form of bioelectricity or valuable biofuels such as ethanol, methane, hydrogen, and hydrogen peroxide. Various types of membranes were applied in these systems, the most common membrane being the cation exchange membrane. In this paper, we discuss three major bioelectrochemical technology research areas namely microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The operation principles of these BESs, role of membranes in these systems and various factors that affect their performance and economics are discussed in detail. Among the three technologies, the MFCs may be functional with or without membranes as separators while the MECs and MDCs require membrane separators. The preliminary economic analysis shows that the capital and operational costs for BESs will significantly decrease in the future due mainly to differences in membrane costs. Currently, MECs appear to be cost-competitive and energy-yielding technology followed by MFCs. Future research endeavors should focus on maximizing the process benefits while simultaneously minimizing the membrane costs related to fouling, maintenance and replacement.
Keywords
membranes; bioelectrochemical systems; bioelectricity; biohydrogen; desalination;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Du, Z., Li, H. and Gu, T. (2007), "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy", Biotechnol. Adv., 25(5), 464-482.   DOI
2 EIA 2009 (2009), $CO_{2}$ Emissions per Kilowatt Hour of Electricity Production (Retrieved on July 24, 2014). http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.html#electric2000
3 Fan, Y.Y., Hu, H.H. and Liu, H.H. (2007), "Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration", J. Power Sources, 171(2), 348-354.   DOI
4 Fumatech (2013), Accessed online on December 28, 2013. http://www.fumatech.com/NR/rdonlyres/0FF1EDB0-DE8F-4601-AD33F7F1D37444/0/FuMaTech_fuma sepMembranes.pdf
5 Geise, G., Hickner, M. and Logan, B. (2013), "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5(20), 10294-10301.   DOI
6 Grzebyk, M. and Pozniak, G. (2005), "Microbial fuel cells (MFCs) with interpolymer cation exchange membranes", Sep. Purif. Technol., 41(3), 321-328.   DOI
7 Gude, V.G. (2015), "Energy and water autarky of wastewater treatment and power generation systems", Renew. Sust. Energ. Rev. DOI: 10.1016/j.rser.2015.01.055   DOI
8 Gude, V.G., Kokabian, B. and Gadhamshetty, V. (2013), "Beneficial bioelectrochemical systems for energy, water, and biomass production", J. Microb. Biochem. Technol., S6, 005.
9 Hu, H., Fan, Y. and Liu, H. (2008), "Hydrogen production using single-chamber membrane-free microbial electrolysis cells", Water Res., 42(15), 4172-4178.   DOI
10 Huggins, T., Fallgren, P.H., Jin, S. and Ren, Z. (2013), "Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater", J. Microb. Biochem. Technol., S6, 002.
11 Jacobson, K.S., Drew, D.M. and He, Z. (2011a), "Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater", Environ. Sci. Technol., 45(10), 4652-4657.   DOI
12 Jacobson, K.S., Drew, D.M. and He, Z. (2011b), "Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode", Bioresource Technol., 102(1), 376-380.   DOI
13 Jikihara, A., Ohashi, R., Kakihana, Y., Higa, M. and Kobayashi, K. (2013), "Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-comethacryloyl aminopropyl trimethyl ammonium chloride)", Membranes, 3(1), 1-15.   DOI
14 Kiely, P.D., Rader, G., Regan, J.M. and Logan, B.E. (2011a), "Long-term cathode performance and the microbial communities that developin microbial fuel cells fed different fermentation endproducts", Bioresource Technol., 102(1), 361-366.   DOI
15 Kiely, P.D., Cusick, R., Call, D.F., Selembo, P.A., Regan, J.M. and Logan, B.E. (2011b), "Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters", Bioresource Technol., 102(1), 388-394.   DOI
16 Kim, Y. and Logan, B.E. (2011), "Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination", Environ. Sci. Technol., 45(13), 5840-5845.   DOI
17 Kim, Y. and Logan, B.E. (2013), "Microbial desalination cells for energy production and desalination", Desalination, 308, 122-130.   DOI
18 Kokabian, B. and Gude, V.G. (2013), "Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production", Environ. Sci. Process. Impact., 15(12), 2178-2185.   DOI
19 Kim, J.R., Cheng, S., Oh, S.E. and Logan, B.E. (2007), "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41(3), 1004-1009.   DOI
20 Kiran Kumar, A., Venkateswar Reddy, M., Chandrasekhar, K., Srikanth, S. and Venkata Mohan, S. (2012), "Endocrine disruptive estrogens role in electron transfer: Bio-electrochemical remediation with microbial mediated electrogenesis", Bioresource Technol., 104, 547-556.   DOI
21 Kokabian, B. and Gude, V.G. (2015), "Sustainable photosynthetic biocathode in microbial desalination cells", Chem. Eng. J., 262, 958-965.   DOI
22 Lawrence Berkeley National Laboratory (2013), Accessed online on December 30, 2013. http://newscenter.lbl.gov/news-releases/2013/08/12/installed-price-of-solar-photovoltaic-systems-in-the-u -s-continues-to-decline-at-a-rapid-pace/
23 Leong, J., Daud, W., Ghasemi, M., Liew, K. and Ismail, M. (2013), "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review", Renew. Sust. Energ. Rev., 28, 575-587.   DOI
24 Li, W.W., Sheng, G.P., Liu, X.W. and Yu, H.Q. (2011), "Recent advances in the separators for microbial fuel cells", Bioresource Technol., 102(1), 244-252.   DOI
25 Liu, H. and Logan, B.E. (2004), "Electricity generation using an air-cathode single chamber microbial fuel cell in the presenceand absence of a proton exchange membrane", Environ. Sci. Technol., 38(14), 4040-4046.   DOI
26 Logan, B.E. (2008), Microbial Fuel Cells, Wiley Publishers, Hoboken, NJ, USA.
27 Luo, H., Ren, Z. and Jenkins, P. (2011), "Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells", Environ. Sci. Technol., 45(1), 340-344.   DOI
28 Logan, B.E. (2009), "Exoelectrogenic bacteria that power microbial fuel cells", Nat. Rev. Microbiol., 7, 375-381.   DOI
29 Logan, B.E., Hamelers, H.V.M., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006), "Microbial fuel cells: Methodology and technology", Environ. Sci. Technol., 40(17), 5181-5192.   DOI
30 Logan, B.E., Call, D., Cheng, S., Hamelers, H.V., Sleutels, T.H., Jeremiasse, A.W. and Rozendal, R.A. (2008), "Microbial electrolysis cells for high yield hydrogen gas production from organic matter", Environ. Sci. Technol., 42(23), 8630-8640.   DOI
31 Luo, H., Xu, P., Roane, T.M., Jenkins, P.E. and Ren, Z. (2012a), "Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination", Bioresour. Technol., 105, 60-66.   DOI
32 Luo, H., Xu, P., Jenkins, P.E. and Ren, Z. (2012b), "Ionic composition and transport mechanisms in microbial desalination cells", J. Membr. Sci., 409-410, 16-23.   DOI
33 Luo, H., Ren, Z. and Xu, P. (2012c), "Long-term performance and characterization of microbial desalination cells in treating domestic wastewater", Bioresource Technol., 120, 187-193.   DOI
34 McCarty, P.L. and Rittmann, B.E. (2001), Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York, NY, USA.
35 McCarty, P.L., Bae, J. and Kim, J. (2011), "Domestic wastewater treatment as a net energy producer - Can this be achieved?", Environ. Sci. Technol., 45, 7100-7106.   DOI   ScienceOn
36 Nevin, K.P., Richter, H., Covalla, S.F., Johnson, J.P., Woodard, T.L., Orloff, A.L., Jia, H., Zhang, M. and Lovley, D.R. (2008), "Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells", Environ. Microbial., 10(10), 2505-2514.   DOI
37 Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X. and Logan, B.E. (2010a), "Using microbial desalination cells to reduce water salinity prior to reverse osmosis", Energy Environ. Sci., 3(), 1114-1120.   DOI
38 Mehanna, M., Kiely, P.D., Call, D.F. and Logan, B.E. (2010b), "Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production", Environ. Sci. Technol., 44, 9578-9583.   DOI
39 Morel, A., Zuo, K., Xia, X., Wei, J., Luo, X., Liang, P. and Huang, X. (2012), "Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate", Bioresource Technol., 118, 43-48.   DOI
40 Oh, S.E. and Logan, B.E. (2006), "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells", Appl. Microbiol. Biotechnol., 70(2), 162-169.   DOI
41 Ping, Q., He, Z., Cohen, B. and Dosoretz, C. (2013), "Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells", Desalination, 325, 48-55.   DOI
42 Qu, Y., Feng, Y., Wang, X., Liu, J., He, W. and Logan, B.E. (2012), "Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control", Bioresour. Technol, 106, 89-94.   DOI
43 Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J. and Buisman, C.J.N. (2008), "Towards practical implementation of bioelectrochemical wastewater treatment", Trends Biotechnol., 26(8), 450-459.   DOI
44 Ringeisen, B.R., Henderson, E., Wu, P.K., Pietron, J., Ray, R., Little, B., Biffinger, J.C. and Jones-Meehan, J.M. (2006), "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10", Environ. Sci. Technol.,40(8), 2629-2634.   DOI
45 Rosenbaum, M., He, Z. and Angenent, L.T. (2010), "Light energy to bioelectricity: photosynthetic microbial fuel cells", Curr. Opin. Chem. Biol., 21(3), 259-264.
46 Rozendal. R.A., Hamelers, H.V.M. and Buisman, C.J.N. (2006), "Effects of membrane cation transport on pH and microbial fuel cell performance" , Environ. Sci. Technol., 40(17), 5206-5211   DOI
47 Sleutels, T.H., Hamelers, H.V., Rozendal, R.A. and Buisman, C.J. (2009), "Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes", Int. J. Hydrogen Energy, 34(9), 3612-3620.   DOI
48 Sustarsic, M. (2009), "Wastewater treatment: Understanding the activated sludge process", CEP, 26-29.
49 U.S. EPA (2012), State and Local Climate and Energy Program: Water/Wastewater, Accessed: on January 01, 2014, Available at: http://www.epa.gov/statelocalclimate/local/topics/water.html
50 Visvanathan, C. and Abeynayaka, A. (2012), "Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)", Membr. Water Treat., Int. J., 3(1), 1-23.   DOI
51 Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N. and Ren, N. (2010), "Sequestration of $CO_{2}$ discharged from anode by algal cathode in microbial carbon capture cells (MCCs)", Biosens and Bioelectron., 25(12), 2639-2643.   DOI
52 Yu, E.H., Cheng, S., Scott, K. and Logan, B.E. (2007), "Microbial fuel cell performance with non-Pt cathode catalysts", J. Power Sources, 171(2), 275-281.   DOI
53 Yang, S., Jia, B. and Liu, H. (2009), "Effects of the Pt loading side and cathode biofilm onthe performance of a membrane-less and single-chamber microbial fuel cell", Bioresour. Technol., 100, 1197-1202.   DOI
54 Yaroslavtsev, A.B. and Nikonenko, V.V. (2009), "Ion-exchange membrane materials: Properties, modification, and practical application", Nanotechnol. Russia, 4(3-4), 137-159.   DOI
55 Yee, R.S.L., Rozendal, R.A., Zhang, K. and Ladewig, B.P. (2012), "Cost effective cationexchange membranes: A review", Chem. Eng. Res. Des., 90(7), 950-959.   DOI
56 Zhang, B. and He, Z. (2012), "Integrated salinity reduction and water recovery in an osmotic microbial desalination cell", RSC Adv., 2(8), 3265-3269.   DOI
57 Zhang, L., Liu, C., Zhuang, L., Li, W., Zhou, S. and Zhang, J. (2009), "Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells", Biosens. Bioelectron, 24(9), 2825-2829.   DOI
58 Zhang, F.F., Chen, M.M., Zhang, Y.Y. and Zeng, R.J. (2012), "Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration", J. Membr. Sci., 417-418, 28-33.   DOI
59 Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P. and Herrmann, I. (2005), "Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells", Electrochem. Commun., 7(12), 1405-1410.   DOI
60 Zhuang, L., Zhou, S., Wang, Y., Liu, C. and Geng, S. (2009), "Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells", Biosens. Bioelectron., 24(12), 3652-3656   DOI
61 Call, D.F., Wagner, R.C. and Logan, B.E. (2009), "Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell", Appl. Environ. Microb., 75(24), 7579-7587.   DOI
62 Zuo, Y., Cheng, S., Call, D. and Logan, B.E. (2007), "Tubular membrane cathodes for scalable power generation in microbial fuel cells", Environ. Sci. Technol., 41(9), 3347-3353.   DOI
63 Zuo, Y., Cheng, S. and Logan, B.E. (2008), "Ion exchange membrane cathodes for scalable microbial fuel cells", Environ. Sci. Technol., 42(18), 6967-6972.   DOI
64 Zuo, K.K., Yuan, L.L., Wei, J.J., Liang, P.P. and Huang, X.X. (2013), "Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell", Bioresource Technol., 146, 637-642.   DOI
65 Ahn, Y. and Logan, B.E. (2010), "Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures", Bioresource Technol., 101(2), 469-475.   DOI   ScienceOn
66 Barbose, G., Darghouth, N., Weaver, S. and Wiser, R. (2013), "Tracking the Sun VI: The Installed Price of Photovoltaics in the United States from 1998 to 2012", LBNL-6350E.
67 Biffinger, J.C., Ray, R., Little, B. and Ringeisen, B.R. (2007), "Diversifying biological fuel cell designs by use of nanoporous filters", Environ. Sci. Technol., 41(4), 1444-1449.   DOI
68 Call, D. and Logan, B.E. (2008), "Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane", Environ. Sci. Technol., 42(9), 3401-3406.   DOI
69 Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X. and Logan, B.E. (2009), "A new method for water desalination using microbial desalination cells", Environ. Sci. Technol., 43(18), 7148-7152.   DOI
70 Chae, K., Choi, M., Ajayi, F., Park, W., Chang, I. and Kim, I. (2008), "Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells", Energ. Fuel., 22(1), 169-176.   DOI
71 Chen, X., Xia, X., Liang, P., Cao, X.X., Sun, H.T. and Huang, X. (2011), "Stacked microbial desalination cells to enhance water desalination efficiency", Environ. Sci. Technol., 45, 2465-2470.   DOI
72 Cheng, S., Liu, H. and Logan, B.E. (2006), "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40(1), 364-369.   DOI
73 Clauwaert, P. and Verstraete, W. (2009), "Methanogenesis in membraneless microbial electrolysis cells", Appl. Microbiol. Biotechnol., 82(5), 829-836.   DOI