본 논문은 MEC (Mobile Edge Computing)기술을 이용하여 건물에 재난이 발생 하였을 때 건물 내 사람들에게 재난에 대해 알리는 건물재난 알림 시스템 구현 방안에 대하여 제안한다. MEC의 개요를 설명하고, MEC를 활용한 네트워크의 구조와 특성을 파악한다. 추가적으로 기업 통합 패턴기반의 Apache Camel의 특성을 파악하고, 이를 활용한 MEC 구현 방안에 대해서 설명한다. 마지막으로 Apache Camel 기반의 MEC를 활용하여 재난 발생시, 센서들을 통해 재난상황을 빠르게 인식하고, 건물 내 사람들을 신속하게 대피할 수 있도록 돕는 건물재난 알림 시스템 구현 방안을 제시한다.
본 논문에서는 mobile edge computing (MEC) 네트워크에서 컨텍스트 기반 IoT 서비스를 위한 새로운 서비스 바인딩 및 리소스 관리 모델을 제시한다. 제안하는 제어는 MEC 서비스 바인딩 제어 계층 (MCL)과 사용자 컨텍스트 제어 계층 (UCL)의 두 가지 계층으로 구성되며, MCL은 시스템 관점에서 서비스 바인딩 구성, 리소스 할당 및 서비스 정책 구성을 관리하고, UCL은 사용자 관점에서 메타 객체를 사용하여 실시간 서비스 적응을 관리한다. 본 논문에서 제안하는 제어 모델은, 실험을 통해 기존 컴퓨팅 모델과 비교할 때 향상된 정보 처리량과 콘텐츠 전송 시간을 제공함을 확인했다. 제안하는 제어 모델은 차세데 MEC 환경에서 컨텍스트 기반의 다양한 사물인터넷 서비스의 핵심 구성 요소로 적용될 수 있다.
Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권10호
/
pp.4849-4864
/
2019
Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.
Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권5호
/
pp.1238-1259
/
2024
Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.
We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.
5G 네트워크의 핵심 기술로 모바일 에지 컴퓨팅(Mobile Edge Computing, MEC)이 주목받음에 따라, 모바일 사용자의 데이터를 기반으로 한 5G 네트워크 기반 에지 AI 기술이 최근 다양한 분야에서 이용되고 있다. 하지만, 전통적인 인공지능 보안에서와 마찬가지로, 에지 AI 핵심 기능을 담당하는 코어망 내 표준 5G 네트워크 기능들에 대한 적대적 교란이 발생할 가능성이 존재한다. 더불어, 3GPP에서 정의한 5G 표준 내 Standalone 모드의MEC 환경에서 발생할 수 있는 데이터 오염 공격은 기존 LTE망 대비 현재 연구가 미비한 실정이다. 본연구에서는 5G에서 에지 AI의 핵심 기능을 담당하는 네트워크 기능인 NWDAF를 활용하는 MEC 환경에 대한 위협 모델을 탐구하고, 일부 개념 증명으로써 Leaf NWDAF에 대한 데이터 오염 공격 탐지 성능을 향상시키기 위한 특징 선택 방법을 제안한다. 제안한 방법론을 통해, NWDAF에서의 Slowloris 공격 기반 데이터 오염 공격에 대해 최대 94.9%의 탐지율을 달성하였다.
Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4572-4586
/
2019
Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.
As computing technology advances, many services, including AI, that previously operated in the cloud will become usable on devices that users carry. The emergence of ultra-high-speed mobile networks like 5G dramatically increases the utility of numerous devices in the real world. In the future, with technologies like deviceless computing, the range of applications will diversify even further, and demand will continue to grow. Consequently, the importance of technology for monitoring vast amounts of device information and deploying AI services tailored to the functions and performance of each device is becoming increasingly evident. Therefore, this paper proposes a large-scale edge device monitoring technique necessary to leverage simple sensors and low-spec, low-resource devices in conjunction with Multi-access Edge Computing (MEC) to provide various AI functionalities.
모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC)은 높은 컴퓨팅 성능을 요구하는 작업을 모바일 장치에서 가까운 MEC 서버로 오프로딩함으로써 모바일 서비스에 높은 계산 요구량을 효율적으로 제공할 수 있는 기술로 부상하였다. 본 논문에서는 실행 대기 시간과 장치 에너지 소비를 줄이기 위해 여러 가지의 독립적 작업을 통해 MEC 시스템에 대한 작업 오프로드 일정 및 전송 에너지 할당을 최적화하는 기법을 제안한다. 시뮬레이션 결과로 MEC 시스템에서 사용 가능한 무선 및 계산 리소스가 상대적으로 균형 잡혀있는 경우 작업 오프로딩 일정이 더 중요하다는 것을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.