• Title/Summary/Keyword: MEA Degradation

Search Result 56, Processing Time 0.022 seconds

Performance Degradation of Mea with Cation Contamination in Polymer Electrolyte Membrane Water Electrolysis (고분자 전해질막 수전해 막전극접합체의 양이온 오염에 따른 성능 저하)

  • JUNG, HYEYOUNG;CHOI, NAKHEON;IM, SUHYUN;YOON, DAEJIN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • Proton Exchange Membrane Water Electrolysis (PEMWE) is one of the most popular and widely used methods for hydrogen production. PEMWE contributes to eco-friendly system via its energy storage system application, hence making it environmentally friendly to use. However, its main drawback is contamination of proton exchange membrane during water electrolysis. Existing cation such as magnesium, calcium and the likes are the cause for membrane contamination. As a result, the cation contamination give rise to degradation of performance of electrolysis and the reverse electrolysis is effective method to remove cation.

Durability Evaluation of Cathode Open-type Proton Exchange Membrane Fuel Cells Stacks (Cathode 개방형 고분자연료전지 스택 내구성 평가)

  • Yoo, Donggeun;Kim, Hyeonsuck;Oh, Sohyeong;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Cathode open-type PEMFC (Proton Exchange Membrane Fuel Cells) stacks, which are widely used in small transport-type PEMFC, have a problem with poor durability. Through the accelerated durability test of the 13-cell PEMFC stack, we tried to find the cause of the degradation of the stack and to contribute to the improvement of the durability of the cathode open stack. A hydrogen/air boundary is formed during start-up/shut-down (SU/SD) due to the structural problem of the cathode open stack in which the cathode is open to the atmosphere and it is difficult to maintain airtightness, thereby deteriorating the cathode. In this study, it was possible to evaluate the durability in a relatively short time by reducing the 54% of the initial performance by repeating SU/SD 1,800 times on the cathode open stack. After dismantling the stack, each cell was divided into two and the performance was analyzed. Overall, the anode outlet MEA, which facilitates air inflow, showed more severe electrode deterioration than the inlet MEA, confirming that the hydrogen/air boundary formation during SU/SD is the main cause of degradation.

Fabrication of Hydrocarbon Membrane based DMFC MEAs with Low Temperature Decal Method (탄화수소계 전해질막과 저온 전사법을 이용한 DMFC용 MEA 제조)

  • Krishnan, N. Nambi;Prabhuram, Joghee;Ha, Heung-Yong;Kim, Soo-Kil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.415-417
    • /
    • 2009
  • A low temperature decal (LTD) transfer method is tried to fabricated hydrocarbon (HC) membrane based MEA. Sandwiched structures of outer ionomer/catalyst/carbon coating/substrate, which had been developed for Nafion membrane, are used for transfer of catalyst to the HC membrane. Performances of the HC MEA before and after 500hr continuous operation are compared and it is found that a severe delamination occurs at the interface between the HC membrane and the catalyst layer, which is the main reason of the low performance and its degradation. The delamination is due probably to the different nature of HC membrane to the Nafion ionomer. A substitutional method, therefore, is suggested to overcome this. In such a way, the outer ionomer process is removed and the low transfer rate of catalyst by skipping the ionomer process is compensated with optimization of other process variables such as transfer time or temperature. The resulting performance is superior to the original LTD method, which can be explained in terms of low resistive components both in ohmic and kinetic.

  • PDF

Absorption Equilibrium of CO2 in the Sterical Hindered Amine, AMP Aqueous Solution (입체장애아민 AMP (2-amino 2-methyl 1-propanol) 수용액의 CO2 흡수평형)

  • Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.197-202
    • /
    • 2007
  • This research was basically carried out to extend the application of $CO_2$ absorption processes for flue-gas system, which are mainly applied to a reforming process in petro-chemical industries. In general, MEA absorbent has some problems in flue-gas treatment, such as, degradation, regeneration energy and absorption capacities. As we known, sterical hindered amine, typically AMP (2-amino 2-methyl 1-propanol), have a good potential to improve these problems. In this paper, the characteristics of $CO_2$ absorption in aqueous AMP solution were measured and compared with that of MEA. It has been found that the $CO_2$ absorption capacity in AMP is double than that of MEA in the low $CO_2$ partial pressure system such as flue-gas. Also, the equilibriums of $CO_2$-AMP system were partially suggested, which are essentially needed to design the absorption process.

Iron Ion Contamination and Acid Washing Effect of Polymer Membrane and Electrode in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지에서 고분자 막과 전극의 철 이온 오염 및 산 세척 효과)

  • Yoo, Donggeun;Park, Minjeong;Oh, Sohyeong;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.20-24
    • /
    • 2022
  • In the process of long-term use of PEMFC (Proton Exchange Membrane Fuel Cells), chemical degradation of membrane electrode assembly (MEA) occurs due to corrosion of stack elements and contamination of supply gas. In this study, we investigated whether chemically degraded MEA can be recovered by acid washing. The performance was measured and compared in a PEMFC cell after contamination with iron ions and washing with an aqueous sulfuric acid solution. The performance was reduced by about 25% by 0.5 ppm iron ion contamination, and 97.1% performance recovery was possible by washing of 0.15 M sulfuric acid. The membrane resistance was increased due to iron ion contamination of the polymer membrane, and the ionic conductivity was restored by washing the iron ions from the membrane while minimizing the loss of the electrode catalyst by washing with a low-concentration sulfuric acid aqueous solution. The possibility of solving the decrease in durability caused by chemical contamination of PEMFC MEA by the acid washing was confirmed.

An Experimental Study on the Degradation of Polymer in Closed Flow System (밀폐계 유동시스템내에서 고분자물질의 퇴화에 관한 실험적 연구)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.679-686
    • /
    • 1999
  • This study is to investigate the effect of a substantial drag reduction caused by the polymer(A611P) when the working fluids flow to the vertical direction in the vertical cylindrical equipment of closed flow system. The drag reduction is associated with the mechanical degrada-tion thermal degradation and heat transfer. By ignore the heat fluxs within the closed system the pressure drop due to the polymer concentration the flow velocity and flow time have been mea-sured. By taking into account the mechanical and thermal degradation in the closed system an experiment has been focused on the determination of the condition which could improve the pump capacity in the heat union electric power plant. Under the condition of non-boiling it has been found out that the change of heat flux has little influence on the drag reduction.

  • PDF

The Performance Degradation of PEMFCs Fabricated with Different GDLs During Exposure to Simultaneous Sulfur Impurity Poisoning Condition (서로 다른 GDL을 이용한 고분자전해질 막 연료전지의 황불순물 복합피독에 의한 성능 저하)

  • Lee, Soo;Kim, Jae-Hyun;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.146-151
    • /
    • 2013
  • This paper reveals the performance decrease and recovery of PEMFC when the contaminated fuel gas and air source with sulfur impurities such as hydrogen sulfide and sulfur dioxide were simultaneously introduced to anode and cathode, respectively. Three different GDLs were fabricated with different carbon black and activated carbon to prevent an introduction of sulfur compound impurities into MEA. components. The severity of $SO_2$ and $H_2S$ poisoning was depended on concentrations(3 ppm - 10 ppm) of sulfur impurities. Especially, cell performance degradation rate was rapid when MEA fabricated with CN-2 GDL because it had little porosity on GDL surface. Moreover, the cell performance can be recovered up to 90%-95% only with neat hydrogen and fresh air feeding.. Conclusively, MEA fabricated with porous CN-1 GDL showed the best cell performance and recovery efficiency during exposure to poisoning condition by simultaneous sulfur impurities.

Effect of Change in Wet/Dry Time of PEMFC Membrane Durability Test Protocol Using Oxygen as Cathode Gas (Cathode 산소 공급조건에서 고분자막 내구평가 프로토콜의 가습/건조 시간 변화의 영향)

  • Lim, Daehyeon;Oh, Sohyeong;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • Since the durability evaluation for improving the durability of PEMFC polymer membranes is very important for the development of PEMFC, research and development of the polymer membrane durability evaluation protocol (AST) continues. Recently, DOE's polymer membrane chemical/mechanical durability evaluation AST was developed and applied to Nafion XL for review. In order to shorten the evaluation time, oxygen was used as a cathode gas instead of air, and it was finished in 144 hours. Since DOE AST has a large number of voltage changes with 45 seconds of humidification and 30 seconds of drying, the degradation of the electrode has more influence on the MEA durability. Therefore, one cycle time was lengthened with 60sec of wet/300sec of dry, and the drying time was made longer than the humidification time to further deteriorate the polymer membrane, and it was finished in 240 hours. It was confirmed that the DOE AST for evaluation of the durability of the polymer membrane was accompanied by electrode degradation.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.

Effect of Membrane Degradation on the Electrode Degradation in PEMFC (PEMFC에서 막 열화가 전극 열화에 미치는 영향)

  • Song, Jinhoon;Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.325-329
    • /
    • 2013
  • The membrane and electrode were degraded coincidentally at real PEMFC(Proton Exchange Membrane Fuel Cells) operation condition. But the interaction membrane degradation between electrode degradation has not been studied. The effect of membrane degradation on electrode degradation was studied in this work. We compared electrode degradation after membrane degradation and electrode degradation without membrane degradation. I-V performance, hydrogen crossover current, impedance and TEM were measured after and before degradation of MEA. Membrane degradation enhanced hydrogen crossover, and then Pt particle growth rate was reduced. Increase of hydrogen crossover by membrane degradation reduced the electrode degradation rate.