Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.1.16

Effect of Change in Wet/Dry Time of PEMFC Membrane Durability Test Protocol Using Oxygen as Cathode Gas  

Lim, Daehyeon (Department of Chemical Engineering, Sunchon National University)
Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University)
Jung, Sunggi (SANG-A FRONTEC CO.Ltd)
Jeong, Jihong (SANG-A FRONTEC CO.Ltd)
Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
Publication Information
Korean Chemical Engineering Research / v.59, no.1, 2021 , pp. 16-20 More about this Journal
Abstract
Since the durability evaluation for improving the durability of PEMFC polymer membranes is very important for the development of PEMFC, research and development of the polymer membrane durability evaluation protocol (AST) continues. Recently, DOE's polymer membrane chemical/mechanical durability evaluation AST was developed and applied to Nafion XL for review. In order to shorten the evaluation time, oxygen was used as a cathode gas instead of air, and it was finished in 144 hours. Since DOE AST has a large number of voltage changes with 45 seconds of humidification and 30 seconds of drying, the degradation of the electrode has more influence on the MEA durability. Therefore, one cycle time was lengthened with 60sec of wet/300sec of dry, and the drying time was made longer than the humidification time to further deteriorate the polymer membrane, and it was finished in 240 hours. It was confirmed that the DOE AST for evaluation of the durability of the polymer membrane was accompanied by electrode degradation.
Keywords
PEMFC; Membrane; Durability; AST; Chemical/Mechanical degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program," J. Power Sources, 143(1-2), 191-196(2005).   DOI
2 Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc, 149(7), S59-S67(2002).   DOI
3 Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
4 Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(10), 2872-2877(1993).   DOI
5 Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004).   DOI
6 Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).   DOI
7 Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(3), 1838-1854(2006).   DOI
8 Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003).   DOI
9 Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005).   DOI
10 Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C.and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131(1-2), 41-48(2004).   DOI
11 https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, "Doe Cell Component Accelerated Stress Test Protocols For Pem Fuel Cells."
12 Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
13 Mukundan, R., "Fuel Cell - Performance and Durability FC139 - Modeling, Evaluation, Characterization," 2016 DOE Fuel Cell Technologies Office Annual Merit Review, June 8th, 2016.
14 Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011).   DOI
15 Mukundan, R., Baker, A. M., Kusoglu, A., Beattie, P., Knights, S., Weber, A. S. and Borup, R. L., "Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing," J. Electrochem. Soc., 165(6), F3085-F3093(2018).   DOI
16 Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
17 Mench, M. M., Emin, C. K. and Veziroglu, T. N., Polymer Electrolyte Fuel Cell Degradation, Academic Press, Oxford, Waltham, MA, 64-77(2012).