DOI QR코드

DOI QR Code

Effect of Membrane Degradation on the Electrode Degradation in PEMFC

PEMFC에서 막 열화가 전극 열화에 미치는 영향

  • Song, Jinhoon (Department of Chemical Engineering, Sunchon National University) ;
  • Jeong, Jaejin (Department of Chemical Engineering, Sunchon National University) ;
  • Jeong, Jaehyeun (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Saehoon (HMC Eco Technology Research Institute) ;
  • Ahn, Byungki (HMC Eco Technology Research Institute) ;
  • Ko, Jaijoon (HMC Eco Technology Research Institute) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2013.02.25
  • Accepted : 2013.03.28
  • Published : 2013.06.01

Abstract

The membrane and electrode were degraded coincidentally at real PEMFC(Proton Exchange Membrane Fuel Cells) operation condition. But the interaction membrane degradation between electrode degradation has not been studied. The effect of membrane degradation on electrode degradation was studied in this work. We compared electrode degradation after membrane degradation and electrode degradation without membrane degradation. I-V performance, hydrogen crossover current, impedance and TEM were measured after and before degradation of MEA. Membrane degradation enhanced hydrogen crossover, and then Pt particle growth rate was reduced. Increase of hydrogen crossover by membrane degradation reduced the electrode degradation rate.

실제 고분자 전해질 연료전지(PEMFC) 운전조건에서는 전극과 전해질 막은 동시에 열화된다. 그런데 고분자전해질 연료전지의 전극 열화와 전해질 열화의 상호 작용에 대해 연구되지 않았다. 본 연구에서는 전해질 막 열화가 전극 열화에 미치는 영향에 대해 연구하였다. 전해질 막 열화 후 전극을 열화시켜 전해질 막 열화없이 전극을 열화시켰을 때와 비교하였다. 열화전후의 I-V 성능, 수소투과전류, 순환 전압측정(CV), 임피던스, TEM 등을 측정하였다. 전해질 막열화에 의해 수소투과도가 증가하고, 이에 따라 백금 입자 성장속도가 감소함으로써 전극 열화속도가 감소함을 보였다.

Keywords

References

  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program, " J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century, " J. Electrochem. Soc, 149(7), S59-S67(2002). https://doi.org/10.1149/1.1488651
  3. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm(Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrog. Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc. 141, 2659-2668(1994). https://doi.org/10.1149/1.2059162
  11. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membrane-electrode-assembly," J. Power Sources, 159, 461-467(2006). https://doi.org/10.1016/j.jpowsour.2005.10.111
  12. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The stability of Pt/C Catalyst in $H_{3}PO_{4}/PBI$ PEMFC During High Temperature Life Test," J. Power Sources, 164, 126-133(2006).
  13. Curtin, D., Lousenberg, R., Henry, T., Tangeman, P. and Tisack, M., "Advanced Materials for Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  14. Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M., "Detection of Ptz+ ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC," J. Electro. Chem. Soc., 154, B96-B105(2007). https://doi.org/10.1149/1.2388863
  15. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/Dry Cycling Test " , Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  16. Song, J., Kim, S., Ahn, B., Ko, J. and Park, K., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean. Chem. Eng. Res.(HWAHAK KONGHAK), 51, 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68

Cited by

  1. PEMFC Cathode 산소 조건에서 전극 촉매 내구성 평가 vol.59, pp.1, 2013, https://doi.org/10.9713/kcer.2021.59.1.11