• Title/Summary/Keyword: MDOE

Search Result 5, Processing Time 0.018 seconds

Process for Identifying QoS Requirements in the Multi-Domain Operations Environment (Multi-Domain Operation Environment QoS 소요식별 절차)

  • Park, Dongsuk;Cho, Bongik;Park, Taehyung;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.177-186
    • /
    • 2022
  • A network QoS model for the joint integrated C4I structure was proposed for the integration of network infrastructure and network operations(NetOps) for NCOE. Detailed QoS requirements process of the joint integrated C4I systems are needs in the Multi-Domain Operation Environment(MDOE). A process is proposed for identifying QoS requirements and establishing in the MDOE using JMT(Joint Mission Thread) reference architecture and solution architecture. Mission analysis identify JCOAs(Joint Critical Operational Activities) and related activities based on JMT & System architecture's OVs, and Information analysis identify QoS attributes using System architecture's SVs. Identifying QoS attributes will be registered at PPS Registry by pre-regulated process, and will be set-up by NetOps. MDOE QoS requirement Process will support efficiently MUM-T and smart defense platform users under the future uncertain battlefield circumstances.

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

A study of coupling mechanism between two dipoles integrated within a conductor-backed thin dieelectric layer above earth using asymptotic evaluation (점근적 근사를 사용한 지표면 위에 놓여 있는 한쪽 면이 도체로 된 얇은 유전체 층 내부의 두 다이폴 사이의 상호 결합 원리에 관한 연구)

  • 박동국;라정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.8-13
    • /
    • 1997
  • An electric field due to point dipole within conductor-backed thin dielectric layer above the earth is calculated by using saddle point method When the dielectric layer is thin enough to support a cutoff mdoe, we show that the field may be approximated by sum of contributions of branch points of TE mode and poles of tM mode and that the branch points and poles contributions are interpreted as an evanescent lateral waves and leaky waves, respectively.

  • PDF

A Study on the Back Bead control by Using Short Circuit Frequency in GMA Welding of Sheet Metal (박판 GMA 용접에서 단락 주파수를 이용한 이면비드의 제어에 관한 연구)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1995
  • In GMA welding of sheet metal, the short circuit metal transfer mdoe is preferred because of its low heat input and capability of bridging the root gap. The molten electrode is transferred to the workpiece during repectitive short circuit in the model. The waveform of welding current or voltage and the frequency of short circuiting are affected by a number of factors including: magnitude of welding current and voltage, root gap, electrode extension, power supply characteristics, and so on. In this study experimental models were proposed, which are able to determine the relationship between the root gap and short circuit frequency and the relationship between the root gap and appropriate welding speed that produces the good quality of back bead without burn through. Using the experimental models, the root gap can be obtained from measuring the short circuit frequency, and then the appropriate weldig speed to the root gap can be determined. Thus a back bead control system was constructed by controlling the welding speed for maintaining the quality of back bead. The developed system has shown the successful capability of back bead control.

  • PDF

Dynamic Shutdown of Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 서버 전원 모드 제어에서의 동적 종료)

  • Kim, Hoyeon;Ham, Chihwan;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.7
    • /
    • pp.283-292
    • /
    • 2013
  • In order to ensure high performance, all the servers in an existing server cluster are always On regardless of number of real-time requests. They ensure QoS, but waste server power if some of them are idle. To save energy consumed by servers, the server power mode control was developed by shutdowning a server when a server is not needed. There are two types of server power mode control depending on when a server is actually turned off if the server is selected to be off: static or dynamic. In a static mode, the server power is actually turned off after a fixed time delay from the time of the server selection. In a dynamic mode, server power is actually turned off if all the services served in the server are done. This corresponds to a turn off after a variable time delay. The static mdoe has disadvantages. It takes much time to find an optimal shutdown time manually through repeated experiments. In this paper, we propose a dynamic shutdown method to overcome the disadvantages of static shutdown. The proposed method allows to guarantee user QoS with good power-saving because it automatically approaches an optimal shutdown time. We performed experiments using 30 PCs cluster. Experimental results show that the proposed dynamic shutdown method is almost same as the best static shutdown in terms of power saving, but better than the best static shutdown in terms of QoS.