• 제목/요약/키워드: MDM2 interaction

검색결과 11건 처리시간 0.025초

MDM2 and TP53 Polymorphisms as Predictive Markers for Head and Neck Cancer in Northeast Indian Population: Effect of Gene-Gene and Gene-Environment Interactions

  • Bhowmik, Aditi;Das, Sambuddha;Bhattacharjee, Abhinandan;Choudhury, Biswadeep;Naiding, Momota;Deka, Sujata;Ghosh, Sankar Kumar;Choudhury, Yashmin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5767-5772
    • /
    • 2015
  • Background: Polymorphisms in the MDM2 309 (T>G) and TP53 72 (G>C) genes are reported to increase the susceptibility to head and neck cancer (HNC) in various populations. The risk for HNC is also strongly associated with etiologic habits such as smoking, alcohol consumption and/or chewing of betel quid (BQ). In a case-control study, we investigated the significance of the above polymorphisms alone, and upon interaction with one another as well as with various etiologic habits in determining HNC risk in a Northeast Indian population. Materials and Methods: Genotyping at 309 MDM2 and 72 TP53 in 122 HNC patients and 86 cancer free healthy controls was performed by PCR using allele specific primers, and the results were confirmed by DNA sequencing. Results: Individuals with the GG mutant allele of MDM2 showed a higher risk for HNC in comparison to those with the TT wild type allele (OR=1.9, 95%CI: 1.1-3.3) (p=0.022). The risk was further increased in females by ~4-fold (OR=4.6, 95% CI: 1.1-19.4) (P=0.04). TP53 polymorphism did not contribute to HNC risk alone; however, interaction between the TP53 GC and MDM2 GG genotypes resulted in significant risk (OR=4.9, 95% CI: 0.2-105.1) (p=0.04). Smokers, BQ- chewers and alcohol consumers showed statistically significant and dose-dependent increase in HNC risk, irrespective of the MDM2 genotype. Conclusions: MDM2 genotype could serve as an important predictive biomarker for HNC risk in the population of Northeast India.

암 치료 표적으로서 p53의 구조적 및 기능적 역할 (The Structural and Functional Role of p53 as a Cancer Therapeutic Target)

  • 한창우;박소영;정미숙;장세복
    • 생명과학회지
    • /
    • 제28권4호
    • /
    • pp.488-495
    • /
    • 2018
  • p53 유전자는 스트레스, DNA 손상, 저산소증 및 종양 발생에 대한 세포 반응의 전사 조절에서 중요한 역할을 담당한다. 최근에 발견된 다양한 종류의 p53의 생리 활성을 생각한다면 p53이 암 조절에 관여한다는 것은 놀랄만한 일이 아니다. 인간 암의 약 50%에는 p53 유전자의 돌연변이 또는 p53을 활성화시키는 기전의 결함을 통해 p53 단백질 기능의 불활성화가 나타난다. p53 기능의 이러한 장애는 p53 의존 반응으로부터 회피를 허용함으로써 종양의 진화에 결정적인 역할을 하게 된다. 최근의 많은 연구들은 p53의 돌연변이를 대폭 감소시키거나 p53의 종양 억제 기능을 복원하기 위하여 선택적인 저분자 화합물을 동정함으로써 p53의 돌연변이를 직접 표적하는 것에 초점을 두고 있다. 이들 저분자는 좋은 약물과 유사한 특성을 유지하면서 다양한 상호작용을 효과적으로 조절해야 한다. 이 중, p53의 음성조절인자 핵심인 MDM2의 발견은 p53과 MDM2 간의 상호작용을 차단하는 새로운 저분자 억제제의 설계를 제공하였다. 저분자 화합물 중 일부는 개념 증명 연구에서 임상 시험으로 옮겨졌으며 향후 맞춤형 항암제가 추가될 전망이다. 본 리뷰에서는 야생형 p53과 돌연변이 p53의 구조적 및 기능적 중요성과 p53을 직접 표적하는 치료제 개발, p53과 MDM2 간의 상호작용을 억제하는 화합물에 대하여 검토하였다.

Identification of High Affinity Non-Peptidic Small Molecule Inhibitors of MDM2-p53 Interactions through Structure-Based Virtual Screening Strategies

  • Bandaru, Srinivas;Ponnala, Deepika;Lakkaraju, Chandana;Bhukya, Chaitanya Kumar;Shaheen, Uzma;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3759-3765
    • /
    • 2015
  • Background: Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic strategy in resurrecting wild type p53 functional status. The present study highlights virtual screening strategies in identification of high affinity small molecule non-peptidic inhibitors. Nutlin3A and RG7112 belonging to compound class of Cis-imidazoline, MI219 of Spiro-oxindole class and Benzodiazepine derived TDP 665759 served as query small molecules for similarity search with a threshold of 95%. The query molecules and the similar molecules corresponding to each query were docked at the transactivation binding cleft of MDM2 protein. Aided by MolDock algorithm, high affinity compound against MDM2 was retrieved. Patch Dock supervised Protein-Protein interactions were established between MDM2 and ligand (query and similar) bound and free states of p53. Compounds with PubCid 68870345, 77819398, 71132874, and 11952782 respectively structurally similar to Nutlin3A, RG7112, Mi219 and TDP 665759 demonstrated higher affinity to MDM2 in comparison to their parent compounds. Evident from the protein-protein interaction studies, all the similar compounds except for 77819398 (similar to RG 7112) showed appreciable inhibitory potential. Of particular relevance, compound 68870345 akin to Nutlin 3A had highest inhibitory potential that respectively showed 1.3, 1.2, 1.16 and 1.26 folds higher inhibitory potential than Nutilin 3A, MI 219, RG 7112 and TDP 1665759. Compound 68870345 was further mapped for structure based pharamacophoric features. In the study, we report Cis-imidazoline derivative compound; Pubcid: 68870345 to have highest inhibitory potential in blocking MDM2-p53 interactions hitherto discovered.

P53 Arg72Pro and MDM2 SNP309 Polymorphisms Cooperate to Increase Lung Adenocarcinoma Risk in Chinese Female Non-smokers: A Case Control Study

  • Ren, Yang-Wu;Yin, Zhi-Hua;Wan, Yan;Guan, Peng;Wu, Wei;Li, Xue-Lian;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5415-5420
    • /
    • 2013
  • Background: Cell cycle deregulation is a major component of carcinogenesis. The p53 tumor suppressor gene plays an important role in regulating cell cycle arrest, and mouse double minute 2 (MDM2) is a key regulator of p53 activity and degradation. Abnormal expression of p53 and MDM2 occurs in various cancers including lung cancer. Methods: We investigated the distribution of the p53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) genotypes in patients and healthy control subjects to assess whether these single nucleotide polymorphisms (SNPs) are associated with an increased risk of lung adenocarcinomas in Chinese female non-smokers. Genotypes of 764 patients and 983 healthy controls were determined using the TaqMan SNP genotyping assay. Results: The p53 Pro/Pro genotype (adjusted OR = 1.55, 95% CI = 1.17-2.06) significantly correlated with an increased risk of lung adenocarcinoma, compared with the Arg/Arg genotype. An increased risk was also noted for MDM2 GG genotype (adjusted OR = 1.68, 95% CI = 1.27-2.21) compared with the TT genotype. Combined p53 Pro/Pro and MDM2 GG genotypes (adjusted OR = 2.66, 95% CI = 1.54-4.60) had a supermultiplicative interaction with respect to lung adenocarcinoma risk. We also found that cooking oil fumes, fuel smoke, and passive smoking may increase the risk of lung adenocarcinomas in Chinese female non-smokers who carry p53 or MDM2 mutant alleles. Conclusions: P53 Arg72Pro and MDM2 SNP309 polymorphisms, either alone or in combination, are associated with an increased lung adenocarcinoma risk in Chinese female non-smokers.

DNA Damage-inducible Phosphorylation of p53 at Ser20 is Required for p53 Stabilization

  • Yang, Dong-Hwa;Rhee, Byung-Kirl;Yim, Tae-Hee;Lee, Hye-Jin;Kim, Jungho
    • Animal cells and systems
    • /
    • 제6권3호
    • /
    • pp.263-269
    • /
    • 2002
  • The p53 tumor suppressor gene is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it sur presses tumor formation remain unclear. DNA damage regulates both the protein levels of p53 and its affinity for specific DNA sequences. Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a downstream target gene of p53 and a protein that targets p53 for degradation in the proteosome. Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between Mdm2 and p53. We generated mice with an allele encoding changes at Ser20, known to be essential for p53 accumulation following DNA damage, to enable analyses of p53 stabilization in vivo. Our data showed that the mutant p53 was clearly defective for full stabilization of p53 in response to DNA damage. We concluded that Ser20 phosphorylation is critical for modulating the negative regulation of p53 by Mdm2, probably through phosphorylation-dependent inhibition of p53-Mdm2 interaction in the physiological context.

SCYL1BP1 has Tumor-suppressive Functions in Human Lung Squamous Carcinoma Cells by Regulating Degradation of MDM2

  • Yang, Zhi-Ping;Xie, Yong-Hong;Ling, Dan-Yan;Li, Jin-Rui;Jiang, Jin;Fan, Yao-Hua;Zheng, Jia-Lian;Wu, Wan-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7467-7471
    • /
    • 2014
  • SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is very important for the development of human cancer. However, the effects of SCYL1BP1 on human lung squamous carcinoma cell biological behavior remain poorly understood. In this study, we present evidence that SCYL1BP1 can promote the degradation of MDM2 protein and further inhibit the G1/S transition of lung squamous carcinoma cell lines. Functional assays found that reintroduction of SCYL1BP1 into lung squamous carcinoma cell lines significantly inhibited cell proliferation, migration, invasion and tumor formation in nude mice, suggesting strong tumor suppressive function of SCYL1BP1 in lung squamous carcinoma. Taken together, our data suggest that the interaction of SCYL1BP1/MDM2 could accelerate MDM2 degradation, and may function as an important tumor suppressor in lung squamous carcinomas.

Ras에 의해 유도된 노화세포에서 핵인 스트레스에 의한 p53 안정화 연구 (The Stability of p53 in Ras-mediated Senescent Cells in Response to Nucleolar Stress)

  • 신충렬;박길홍;이기호;김상훈
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.436-441
    • /
    • 2009
  • B23/nucleophosmin은 핵인 단백질로서 외부 스트레스에 의해 핵인에서 핵으로 이동하게 된다. 이러한 세포 내 위치변화는 MDM2에 의한 p53단백질의 안정화에 영향을 미친다. 노화세포는 거대한 단일 핵인을 가지고 있으며, 외부 스트레스에 의해 p53 안정성이 감소한다. 그렇지만, 노화세포에서 어떠한 기전에 의해 p53의 불안정성이 증가하는 지는 아직 밝혀진 바가 없다. 따라서 본 연구에서는 노화세포에서 B23/nucleophosmin과 p53간의 상호 관련성을 조사하여 p53 안정성에 미치는 영향을 규명하고자 하였다. 본 연구에서는 IMR90세포주에 ras oncogene을 과발현시켜 노화세포를 유도하였다. 핵인 스트레스에 의해 노화세포 내 p53 단백질 발현은 감소하였으나, B23/nucleophosmin 단백질의 발현은 정상세포와 큰 차이가 없었다. 그렇지만, 두 단백질의 세포 내 위치는 노화세포에서 변화가 있었다. 즉, 정상세포와 달리, 노화세포에서는 스트레스에 의해 핵 내 p53발현이 증가하지 않았으며, B23/nucleophosmin은 핵 내로 이동하지 않고, 핵인에 그대로 머물러 있었다. 노화세포에서 MDM2와 p53간 상호결합이 안정적으로 유지된대 비하여, p53과 B23/nucleophosmin간의 상호결합은 감소하였다. 이러한 결과는 노화세포에서 핵인 스트레스에 의한 p53단백질의 안정성은 B23/nucleophosmin 결합이 감소하여 일어나는 것으로 해석된다.

EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development

  • Kim, Byeong-Seong;Ko, Hyo Rim;Hwang, Inwoo;Cho, Sung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • 제54권8호
    • /
    • pp.413-418
    • /
    • 2021
  • ErbB3-binding protein 1 (EBP1) is a multifunctional protein associated with neural development. Loss of Ebp1 leads to upregulation of the gene silencing unit suppressor of variegation 3-9 homolog 1 (Suv39H1)/DNA (cytosine 5)-methyltransferase (DNMT1). EBP1 directly binds to the promoter region of DNMT1, repressing DNA methylation, and hence, promoting neural development. In the current study, we showed that EBP1 suppresses histone methyltransferase activity of Suv39H1 by promoting ubiquitin-proteasome system (UPS)-dependent degradation of Suv39H1. In addition, we showed that EBP1 directly interacts with Suv39H1, and this interaction is required for recruiting the E3 ligase MDM2 for Suv39H1 degradation. Thus, our findings suggest that EBP1 regulates UPS-dependent degradation of Suv39H1 to govern proper heterochromatin assembly during neural development.

Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body

  • Choi, Miri;Baek, Jiyeon;Han, Sang-Bae;Cho, Sungchan
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.526-531
    • /
    • 2018
  • Protein-Protein Interactions (PPIs) play essential roles in diverse biological processes and their misregulations are associated with a wide range of diseases. Especially, the growing attention to PPIs as a new class of therapeutic target is increasing the need for an efficient method of cell-based PPI analysis. Thus, we newly developed a robust PPI assay (SeePPI) based on the co-translocation of interacting proteins to the discrete subcellular compartment 'processing body' (p-body) inside living cells, enabling a facile analysis of PPI by the enriched fluorescent signal. The feasibility and strength of SeePPI (${\underline{S}}ignal$ ${\underline{e}}nhancement$ ${\underline{e}}xclusively$ on ${\underline{P}}-body$ for ${\underline{P}}rotein-protein$ ${\underline{I}}nteraction$) assay was firmly demonstrated with FKBP12/FRB interaction induced by rapamycin within seconds in real-time analysis of living cells, indicating its recapitulation of physiological PPI dynamics. In addition, we applied p53/MDM2 interaction and its dissociation by Nutlin-3 to SeePPI assay and further confirmed that SeePPI was quantitative and well reflected the endogenous PPI. Our SeePPI assay will provide another useful tool to achieve an efficient analysis of PPIs and their modulators in cells.

Transcriptional Profiling and Dynamical Regulation Analysis Identify Potential Kernel Target Genes of SCYL1-BP1 in HEK293T Cells

  • Wang, Yang;Chen, Xiaomei;Chen, Xiaojing;Chen, Qilong;Huo, Keke
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.691-698
    • /
    • 2014
  • SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SCYL1-BP1 expression was inhibited by RNA interference in HEK293T cells. We functionally characterized the effects of potential kernel miRNA-target genes by miRNA-target network and protein-protein interaction network analysis. Importantly, we showed the diminished SCYL1-BP1 dramatically reduced the expression levels of EEA1, BMPR2 and BRCA2 in HEK293T cells. Thus, we infer that SCYL1-BP1 plays a critical function in HEK293T cell development and directly regulates miRNA-target genes, including, but not limited to, EEA1, BMPR2, and BRCA2, suggesting a new strategy for investigating the molecular mechanism of SCYL1-BP1.