• Title/Summary/Keyword: MDM2 interaction

Search Result 11, Processing Time 0.026 seconds

MDM2 and TP53 Polymorphisms as Predictive Markers for Head and Neck Cancer in Northeast Indian Population: Effect of Gene-Gene and Gene-Environment Interactions

  • Bhowmik, Aditi;Das, Sambuddha;Bhattacharjee, Abhinandan;Choudhury, Biswadeep;Naiding, Momota;Deka, Sujata;Ghosh, Sankar Kumar;Choudhury, Yashmin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5767-5772
    • /
    • 2015
  • Background: Polymorphisms in the MDM2 309 (T>G) and TP53 72 (G>C) genes are reported to increase the susceptibility to head and neck cancer (HNC) in various populations. The risk for HNC is also strongly associated with etiologic habits such as smoking, alcohol consumption and/or chewing of betel quid (BQ). In a case-control study, we investigated the significance of the above polymorphisms alone, and upon interaction with one another as well as with various etiologic habits in determining HNC risk in a Northeast Indian population. Materials and Methods: Genotyping at 309 MDM2 and 72 TP53 in 122 HNC patients and 86 cancer free healthy controls was performed by PCR using allele specific primers, and the results were confirmed by DNA sequencing. Results: Individuals with the GG mutant allele of MDM2 showed a higher risk for HNC in comparison to those with the TT wild type allele (OR=1.9, 95%CI: 1.1-3.3) (p=0.022). The risk was further increased in females by ~4-fold (OR=4.6, 95% CI: 1.1-19.4) (P=0.04). TP53 polymorphism did not contribute to HNC risk alone; however, interaction between the TP53 GC and MDM2 GG genotypes resulted in significant risk (OR=4.9, 95% CI: 0.2-105.1) (p=0.04). Smokers, BQ- chewers and alcohol consumers showed statistically significant and dose-dependent increase in HNC risk, irrespective of the MDM2 genotype. Conclusions: MDM2 genotype could serve as an important predictive biomarker for HNC risk in the population of Northeast India.

The Structural and Functional Role of p53 as a Cancer Therapeutic Target (암 치료 표적으로서 p53의 구조적 및 기능적 역할)

  • Han, Chang Woo;Park, So Young;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.488-495
    • /
    • 2018
  • The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50% of all human cancers, inactivation of p53's protein function occurs either through mutations in the gene itself or defects in the mechanisms that activate it. This disorder plays a crucial role in tumor evolution by allowing the evasion of a p53-dependent response. Many recent studies have focused on directly targeting p53 mutants by identifying selective, small molecular compounds to deplete them or to restore their tumor-suppressive function. These small molecules should effectively regulate various interactions while maintaining good drug-like properties. Among them, the discovery of the key p53-negative regulator, MDM2, has led to the design of new small molecule inhibitors that block the interaction between p53 and MDM2. Some of these small molecule compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, more personalized anti-carcinogenic medicines. Here, we review the structural and functional consequences of wild type and mutant p53 as well as the development of therapeutic agents that directly target this gene, and compounds that inhibit the interaction between it and MDM2.

Identification of High Affinity Non-Peptidic Small Molecule Inhibitors of MDM2-p53 Interactions through Structure-Based Virtual Screening Strategies

  • Bandaru, Srinivas;Ponnala, Deepika;Lakkaraju, Chandana;Bhukya, Chaitanya Kumar;Shaheen, Uzma;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3759-3765
    • /
    • 2015
  • Background: Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic strategy in resurrecting wild type p53 functional status. The present study highlights virtual screening strategies in identification of high affinity small molecule non-peptidic inhibitors. Nutlin3A and RG7112 belonging to compound class of Cis-imidazoline, MI219 of Spiro-oxindole class and Benzodiazepine derived TDP 665759 served as query small molecules for similarity search with a threshold of 95%. The query molecules and the similar molecules corresponding to each query were docked at the transactivation binding cleft of MDM2 protein. Aided by MolDock algorithm, high affinity compound against MDM2 was retrieved. Patch Dock supervised Protein-Protein interactions were established between MDM2 and ligand (query and similar) bound and free states of p53. Compounds with PubCid 68870345, 77819398, 71132874, and 11952782 respectively structurally similar to Nutlin3A, RG7112, Mi219 and TDP 665759 demonstrated higher affinity to MDM2 in comparison to their parent compounds. Evident from the protein-protein interaction studies, all the similar compounds except for 77819398 (similar to RG 7112) showed appreciable inhibitory potential. Of particular relevance, compound 68870345 akin to Nutlin 3A had highest inhibitory potential that respectively showed 1.3, 1.2, 1.16 and 1.26 folds higher inhibitory potential than Nutilin 3A, MI 219, RG 7112 and TDP 1665759. Compound 68870345 was further mapped for structure based pharamacophoric features. In the study, we report Cis-imidazoline derivative compound; Pubcid: 68870345 to have highest inhibitory potential in blocking MDM2-p53 interactions hitherto discovered.

P53 Arg72Pro and MDM2 SNP309 Polymorphisms Cooperate to Increase Lung Adenocarcinoma Risk in Chinese Female Non-smokers: A Case Control Study

  • Ren, Yang-Wu;Yin, Zhi-Hua;Wan, Yan;Guan, Peng;Wu, Wei;Li, Xue-Lian;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5415-5420
    • /
    • 2013
  • Background: Cell cycle deregulation is a major component of carcinogenesis. The p53 tumor suppressor gene plays an important role in regulating cell cycle arrest, and mouse double minute 2 (MDM2) is a key regulator of p53 activity and degradation. Abnormal expression of p53 and MDM2 occurs in various cancers including lung cancer. Methods: We investigated the distribution of the p53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) genotypes in patients and healthy control subjects to assess whether these single nucleotide polymorphisms (SNPs) are associated with an increased risk of lung adenocarcinomas in Chinese female non-smokers. Genotypes of 764 patients and 983 healthy controls were determined using the TaqMan SNP genotyping assay. Results: The p53 Pro/Pro genotype (adjusted OR = 1.55, 95% CI = 1.17-2.06) significantly correlated with an increased risk of lung adenocarcinoma, compared with the Arg/Arg genotype. An increased risk was also noted for MDM2 GG genotype (adjusted OR = 1.68, 95% CI = 1.27-2.21) compared with the TT genotype. Combined p53 Pro/Pro and MDM2 GG genotypes (adjusted OR = 2.66, 95% CI = 1.54-4.60) had a supermultiplicative interaction with respect to lung adenocarcinoma risk. We also found that cooking oil fumes, fuel smoke, and passive smoking may increase the risk of lung adenocarcinomas in Chinese female non-smokers who carry p53 or MDM2 mutant alleles. Conclusions: P53 Arg72Pro and MDM2 SNP309 polymorphisms, either alone or in combination, are associated with an increased lung adenocarcinoma risk in Chinese female non-smokers.

DNA Damage-inducible Phosphorylation of p53 at Ser20 is Required for p53 Stabilization

  • Yang, Dong-Hwa;Rhee, Byung-Kirl;Yim, Tae-Hee;Lee, Hye-Jin;Kim, Jungho
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • The p53 tumor suppressor gene is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it sur presses tumor formation remain unclear. DNA damage regulates both the protein levels of p53 and its affinity for specific DNA sequences. Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a downstream target gene of p53 and a protein that targets p53 for degradation in the proteosome. Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between Mdm2 and p53. We generated mice with an allele encoding changes at Ser20, known to be essential for p53 accumulation following DNA damage, to enable analyses of p53 stabilization in vivo. Our data showed that the mutant p53 was clearly defective for full stabilization of p53 in response to DNA damage. We concluded that Ser20 phosphorylation is critical for modulating the negative regulation of p53 by Mdm2, probably through phosphorylation-dependent inhibition of p53-Mdm2 interaction in the physiological context.

SCYL1BP1 has Tumor-suppressive Functions in Human Lung Squamous Carcinoma Cells by Regulating Degradation of MDM2

  • Yang, Zhi-Ping;Xie, Yong-Hong;Ling, Dan-Yan;Li, Jin-Rui;Jiang, Jin;Fan, Yao-Hua;Zheng, Jia-Lian;Wu, Wan-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7467-7471
    • /
    • 2014
  • SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is very important for the development of human cancer. However, the effects of SCYL1BP1 on human lung squamous carcinoma cell biological behavior remain poorly understood. In this study, we present evidence that SCYL1BP1 can promote the degradation of MDM2 protein and further inhibit the G1/S transition of lung squamous carcinoma cell lines. Functional assays found that reintroduction of SCYL1BP1 into lung squamous carcinoma cell lines significantly inhibited cell proliferation, migration, invasion and tumor formation in nude mice, suggesting strong tumor suppressive function of SCYL1BP1 in lung squamous carcinoma. Taken together, our data suggest that the interaction of SCYL1BP1/MDM2 could accelerate MDM2 degradation, and may function as an important tumor suppressor in lung squamous carcinomas.

The Stability of p53 in Ras-mediated Senescent Cells in Response to Nucleolar Stress (Ras에 의해 유도된 노화세포에서 핵인 스트레스에 의한 p53 안정화 연구)

  • Sihn, Choong-Ryoul;Park, Gil-Hong;Lee, Kee-Ho;Kim, Sang-Hoon
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.436-441
    • /
    • 2009
  • B23/nucleophosmin, a nucleolar protein, translocates into the nucleus from the nucleolus when cells are damaged by extracellular stresses. Recently, it was shown that such translocation of B23/nucleophosmin in normal fibroblasts under stress conditions increases both the stability and activation of the p53 protein by disrupting its interaction with MDM2. Senescent cells have a single large nucleolus and a diminished capacity to induce p53 stability upon exposure to various DNA damaging agents. To investigate the role of B23/nucleophosmin in p53 stability in senescent cells, we established a senescence model system by expressing the ras oncogene in IMR90 cells. The stability of p53 was reduced in these cells in response to nucleolar stress, although the level of B23/nucleophosmin protein was not changed. In addition, p53 did not accumulate in the nucleus and B23/nucleophosmin did not translocate into the nucleoplasm. The binding affinity of B23/nucleophosmin with p53 was reduced in senescent cells, whereas the interaction between MDM2 and p53 was stable. Taken together, the stability of p53 in ras-induced senescent cells may be influenced by the ability of B23/nucleophosmin to interact with p53 in response to nucleolar stress.

EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development

  • Kim, Byeong-Seong;Ko, Hyo Rim;Hwang, Inwoo;Cho, Sung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.413-418
    • /
    • 2021
  • ErbB3-binding protein 1 (EBP1) is a multifunctional protein associated with neural development. Loss of Ebp1 leads to upregulation of the gene silencing unit suppressor of variegation 3-9 homolog 1 (Suv39H1)/DNA (cytosine 5)-methyltransferase (DNMT1). EBP1 directly binds to the promoter region of DNMT1, repressing DNA methylation, and hence, promoting neural development. In the current study, we showed that EBP1 suppresses histone methyltransferase activity of Suv39H1 by promoting ubiquitin-proteasome system (UPS)-dependent degradation of Suv39H1. In addition, we showed that EBP1 directly interacts with Suv39H1, and this interaction is required for recruiting the E3 ligase MDM2 for Suv39H1 degradation. Thus, our findings suggest that EBP1 regulates UPS-dependent degradation of Suv39H1 to govern proper heterochromatin assembly during neural development.

Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body

  • Choi, Miri;Baek, Jiyeon;Han, Sang-Bae;Cho, Sungchan
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.526-531
    • /
    • 2018
  • Protein-Protein Interactions (PPIs) play essential roles in diverse biological processes and their misregulations are associated with a wide range of diseases. Especially, the growing attention to PPIs as a new class of therapeutic target is increasing the need for an efficient method of cell-based PPI analysis. Thus, we newly developed a robust PPI assay (SeePPI) based on the co-translocation of interacting proteins to the discrete subcellular compartment 'processing body' (p-body) inside living cells, enabling a facile analysis of PPI by the enriched fluorescent signal. The feasibility and strength of SeePPI (${\underline{S}}ignal$ ${\underline{e}}nhancement$ ${\underline{e}}xclusively$ on ${\underline{P}}-body$ for ${\underline{P}}rotein-protein$ ${\underline{I}}nteraction$) assay was firmly demonstrated with FKBP12/FRB interaction induced by rapamycin within seconds in real-time analysis of living cells, indicating its recapitulation of physiological PPI dynamics. In addition, we applied p53/MDM2 interaction and its dissociation by Nutlin-3 to SeePPI assay and further confirmed that SeePPI was quantitative and well reflected the endogenous PPI. Our SeePPI assay will provide another useful tool to achieve an efficient analysis of PPIs and their modulators in cells.

Transcriptional Profiling and Dynamical Regulation Analysis Identify Potential Kernel Target Genes of SCYL1-BP1 in HEK293T Cells

  • Wang, Yang;Chen, Xiaomei;Chen, Xiaojing;Chen, Qilong;Huo, Keke
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.691-698
    • /
    • 2014
  • SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SCYL1-BP1 expression was inhibited by RNA interference in HEK293T cells. We functionally characterized the effects of potential kernel miRNA-target genes by miRNA-target network and protein-protein interaction network analysis. Importantly, we showed the diminished SCYL1-BP1 dramatically reduced the expression levels of EEA1, BMPR2 and BRCA2 in HEK293T cells. Thus, we infer that SCYL1-BP1 plays a critical function in HEK293T cell development and directly regulates miRNA-target genes, including, but not limited to, EEA1, BMPR2, and BRCA2, suggesting a new strategy for investigating the molecular mechanism of SCYL1-BP1.