• Title/Summary/Keyword: MDD procedure

Search Result 4, Processing Time 0.579 seconds

Diagnostic Approaches for Idiopathic Pulmonary Fibrosis

  • Jae Ha Lee;Jin Woo Song
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.40-51
    • /
    • 2024
  • Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia with a very poor prognosis. Accurate diagnosis of IPF is essential for good outcomes but remains a major medical challenge due to variability in clinical presentation and the shortcomings of existing diagnostic tests. Medical history collection is the first and most important step in the IPF diagnosis process; the clinical probability of IPF is high if the suspected patient is 60 years or older, male, and has a history of cigarette smoking. Systemic assessment for connective tissue disease is essential in the initial evaluation of patients with suspected IPF to identify potential causes of interstitial lung disease (ILD). Radiologic examination using high-resolution computed tomography plays a pivotal role in the evaluation of patients with ILD, and prone and expiratory computed tomography images can be considered. If additional tests such as surgical lung biopsy or transbronchial lung cryobiopsy are needed, transbronchial lung cryobiopsy should be considered as an alternative to surgical lung biopsy in medical centers with experience performing this procedure. Diagnosis through multidisciplinary discussion (MDD) is strongly recommended as MDD has become the cornerstone for diagnosis of IPF, and the scope of MDD has expanded to monitoring of disease progression and suggestion of appropriate treatment options.

Computational Detection of Prokaryotic Core Promoters in Genomic Sequences

  • Kim Ki-Bong;Sim Jeong Seop
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.411-416
    • /
    • 2005
  • The high-throughput sequencing of microbial genomes has resulted in the relatively rapid accumulation of an enormous amount of genomic sequence data. In this context, the problem posed by the detection of promoters in genomic DNA sequences via computational methods has attracted considerable research attention in recent years. This paper addresses the development of a predictive model, known as the dependence decomposition weight matrix model (DDWMM), which was designed to detect the core promoter region, including the -10 region and the transcription start sites (TSSs), in prokaryotic genomic DNA sequences. This is an issue of some importance with regard to genome annotation efforts. Our predictive model captures the most significant dependencies between positions (allowing for non­adjacent as well as adjacent dependencies) via the maximal dependence decomposition (MDD) procedure, which iteratively decomposes data sets into subsets, based on the significant dependence between positions in the promoter region to be modeled. Such dependencies may be intimately related to biological and structural concerns, since promoter elements are present in a variety of combinations, which are separated by various distances. In this respect, the DDWMM may prove to be appropriate with regard to the detection of core promoter regions and TSSs in long microbial genomic contigs. In order to demonstrate the effectiveness of our predictive model, we applied 10-fold cross-validation experiments on the 607 experimentally-verified promoter sequences, which evidenced good performance in terms of sensitivity.

Transbronchial Lung Cryobiopsy for Diagnosing Interstitial Lung Disease: A Retrospective Single-Center Experience

  • Park, Jin Han;Jang, Ji Hoon;Kim, Hyun Kuk;Jang, Hang-Jea;Lee, Sunggun;Kim, SeongHo;Kim, Ji Yeon;Choi, Hee Eun;Han, Ji-yeon;Kim, Da Som;Kang, Min Kyun;Kang, Eunsu;Kim, Il Hwan;Lee, Jae Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.4
    • /
    • pp.341-348
    • /
    • 2022
  • Background: An accurate diagnosis in patients with interstitial lung diseases (ILDs) by multidisciplinary discussion (MDD) based on histopathologic information is essential for optimal treatment. Transbronchial lung cryobiopsy (TBLC) has increasingly been used as a diagnostic alternative to surgical lung biopsy. This study aimed to evaluate the appropriate methods of TBLC in patients with ILD in Korea. Methods: A total of 27 patients who underwent TBLC were included. TBLC procedure details and clinical MDD diagnosis using TBLC histopathologic information were retrospectively analyzed. Results: All procedures were performed under general anesthesia with the fluoroscopic guidance in the operation room using flexible bronchoscopy and endobronchial balloon blocker. The median procedure duration was less than 30 minutes, and the median number of biopsies per participant was 2. Most of the bleeding after TBLC was not severe, and the rate of pneumothorax was 25.9%. The most common histopathologic pattern was alternative (48.2%), followed by indeterminate (33.3%) and usual interstitial pneumonia (UIP)/probable UIP (18.5%). In the MDD after TBLC, the most common diagnosis was idiopathic pulmonary fibrosis (33.3%), followed by smoking-related ILD (25.9%), nonspecific interstitial pneumonia (18.6%), unclassifiable-ILD (14.8%), and others (7.4%). Conclusion: This first single-center experience showed that TBLC using a flexible bronchoscopy and endobronchial balloon blocker with the fluoroscopic guidance under general anesthesia may be a safe and adequate diagnostic method for ILD patients in Korea. The diagnostic yield of MDD was 85.2%. Further studies are needed to evaluate the diagnostic yield and confidence of TBLC.

Evaluation of Flexible Pavement Layer Moduli Using the Depth Deflectometer and Flexible Pavement Behavior under Various Vehicle Speeds (아스팔트 콘크리트 포장구조체의 내부처짐에 의한 물성추정과 주행속도에 따른 거동분석)

  • Choi, Jun-Seong;Kin, Soo-Il;Yoo, Ji-hyung
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.135-145
    • /
    • 2000
  • A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.

  • PDF