• Title/Summary/Keyword: MDA-MB-231 cells (breast cancer cells)

Search Result 212, Processing Time 0.034 seconds

Loquat (Eriobotrya japonica) extracts suppress the adhesion, migration and invasion of human breast cancer cell line

  • Kim, Min-Sook;You, Mi-Kyoung;Rhuy, Dong-Young;Kim, Yung-Jae;Baek, Hum-Young;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.3 no.4
    • /
    • pp.259-264
    • /
    • 2009
  • We examined the inhibitory effects of loquat methanol extract on the adhesion, migration, invasion and matrix metalloproteinase (MMP) activities of MDA-MB-231 human breast cancer cell line. Cells were cultured with DMSO or with 10, 25, or 50 ${\mu}g/ml$ of loquat methanol extract. Both leaf and seed extracts significantly inhibited growth of MDA-MB-231 cells in a dose-dependent manner, although leaf extract was more effective. Adhesion and migration were significantly inhibited by loquat extracts in a dose-dependent manner. Loquat extract also inhibited the invasion of breast cancer cells in a dose-dependent manner and leaf extract was more effective than seed extract. MMP-2 and MMP-9 activities were also inhibited by loquat extract. Our results indicate that methanol extracts of loquat inhibit the adhesion, migration and invasion of human breast cancer cells partially through the inhibition of MMP activity and leaf extract has more anti-metastatic effects in cell based assay than seed extract. Clinical application of loquat extract as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.

Pectic-Oligoshaccharides from Apples Induce Apoptosis and Cell Cycle Arrest in MDA-MB-231 Cells, a Model of Human Breast Cancer

  • Delphi, Ladan;Sepehri, Houri;Khorramizadeh, Mohammad Reza;Mansoori, Fatemeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5265-5271
    • /
    • 2015
  • Background: The effects of plant products on cancer cells has become a field of major importance. Many substancesmay induce apoptosis in anti-cancer treatment. Pectins, a family of complex polysaccharides, and their degradation products may for exasmple exert apoptotic effects in cancer cells. Apples and citrus fruits are the main sources of pectin which can be applied for anti-cancer research. The present study concerned an intact form of pectic-oligoshaccharide named pectic acid (poly galactronic acid). Materials and Methods: Inhibition of cell proliferation assays (MTT), light microscopy, fluorescence microscopy (acridin orange/ethidium bromide), DNA fragmentation tests, cell cycle analysis, annexin PI and Western blotting methods were applied to evaluate apoptosis. Results: The results indicated that pectic acid inhibited cell growth and reduced cell attachment after 24h incubation. This did not appear to be due to necrosis, since morphological features of apoptosis were detected with AO/EB staining and cell cycling was blocked in the sub-G1 phase. Annexin/PI and DNA fragmentation findings indicated that apoptosis frequency increased after 24h incubation with pectic acid. In addition, the data showed pectic acid induced caspase-dependent apoptosis. Conclusions: These data indicate that apple pectic acid without any modification could trigger apoptosis in MDA-MB-231 human breast cancer cells and has potential to improve cancer treatment as a natural product.

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoonho;Lee, Keunwook;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.322-327
    • /
    • 2018
  • A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

Anticancer activity of gomisin J from Schisandra chinensis fruit

  • Samil Jung;Hyung-In Moon;Subeen Kim;Nguyen Thi Ngoc Quynh;Jimin Yu;Zolzaya Sandag;Dan-Diem Thi Le;Hyegyeong Lee;Hyojeong Lee;Myeong-Sok Lee
    • Oncology Letters
    • /
    • v.41 no.1
    • /
    • pp.711-717
    • /
    • 2019
  • In attempting to identify effective anticancer drugs from natural products that are harmless to humans, we found that the gomisin J from Schisandra chinensis fruit has anticancer activity. Schisandra chinensis fruits are used in traditional herbal medicine and gomisin J is one of their chemical constituents. In the present study, we examined the anticancer activity of gomisin J in MCF7 and MDA-MB-231 breast cancer cell lines and in MCF10A normal cell line, in a time- and concentration-dependent manner. Our data revealed that gomisin J exerted a much stronger cytotoxic effect on MCF7 and MDA-MB-231 cancer cells than on MCF10A normal cells. Gomisin J suppressed the proliferation and decreased the viability of MCF7 and MDA-MB-231 cells at relatively low (<10 ㎍/ml) and high (>30 ㎍/ml) concentrations, respectively. Our data also revealed that gomisin J induced necroptosis, a programmed form of necrosis, as well as apoptosis. Notably, gomisin J predominantly induced necroptosis in MCF7 cells that are known to have high resistance to many pro-apoptotic anticancer drugs, while MDA-MB-231 exhibited a much lower level of necroptosis but instead a higher level of apoptosis. This data indicated the possibility that it may be used as a more effective anticancer drug, especially in apoptosis-resistant malignant cancer cells. In an extended study, gomisin J exhibited a strong cytotoxic effect on all tested various types of 13 cancer cell lines, indicating its potential to be used against a wide range of different types of cancer cells.

Effects of Citri Reticulatae Viride Pericarpium on the Apoptotic Cell Death in Breast Cancer Cells (청피(靑皮)가 유방암세포의 Apoptosis에 미치는 영향)

  • Kim, Ji-Eun;Park, Soo-Yeon;Choi, Chang-Won;Kim, Kyeong-Soo;Kim, Kyeong-Ok;Wei, Tung-Shuen;Yang, Seung-Joung
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.40-54
    • /
    • 2015
  • Objectives : In the theory of Korean medicine, Citri Reticulatae Viride Pericarpium (CRVP) can soothe the liver to break qi stagnation, eliminate mass and relieve dyspepsia. This study was carried out to investigate the effects of CRVP on the apoptotic cell death in breast cancer cells. Methods : In the present experiment, the effects of CRVP on proliferation rates, type of cell death, cell cycle distribution, and intracellular oxidative stress were investigated using MDA-MB-231 cells in vitro. In addition, the effects on expression levels of caspase 3, caspase 9, Bax and Bcl-2 were also investigated. Results : Treatment with CRVP decreased proliferation rates in a dose dependent manner. ID50 (50% inhibitory dosage) was 175.4 μg/ml. In the CRVP treated group, cell volumes showed smaller than non-treated normal. In addition, CRVP increased percentage of apoptotic and sub G1 arrested cells respectively. 200 μg/ml of CRVP treatment increased intracellular ROS level significantly. Finaly the expression level of caspase 3 and Bax/Bcl-2 ratio were elevated by treatment with CRVP respectively. Conclusions : These results suggest that CRVP can trigger intrinsic apoptotic pathway in MDA-MB-231 cells.

The Effect of Red Cabbage (Brassica oleracea L. var. capitata f. rubra) Extract on the Apoptosis in Human Breast Cancer MDA-MB-231 Cells (적양배추 추출물이 인체 유방암 세포 MDA-MB-231의 세포사멸에 미치는 영향)

  • Nam, Mi Kyung;Kang, Keum Jee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • We investigated the effect of red cabbage extract (RCE) on cell death in MDA-MB-231 human breast cancer cells. Cells were cultured in the presence 1.0, 1.5, and 2.0 mg/mL concentrations of RCE for 24 hours. MTT assays demonstrated that mitochondrial dehydrogenase activities decreased in a dose-dependent manner in cells (p<0.05). In contrast, the proportion of dual staining with Hoechst 33342/ethidium bromide (EtBr) for cell death increased in a dose-dependent manner in cells (p<0.05). Flow cytometry assays revealed that cell death caused by an apoptotic program increased in a dose-dependent (p<0.05). Also, increased ROS accumulation in cells, as revealed by DCF-DA staining, was observed in a dose-dependent fashion (p<0.05). The apoptosis suppressor gene Bcl-2 decreased significantly at the mRNA level. Pro-apoptotic genes Bax and caspase-3, genes that are related to the last stage of apoptosis significantly increased. The Bcl-2/Bax ratio which is an important indicator of apoptosis, was found to have significantly decreased dose dependence. These results taken together indicate that the effect of red cabbage extract induces cell death in MDA-MB-231 human breast cancer cells.

Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

  • Nguyen, Linh Thi Thao;Song, Yeon Woo;Cho, Somi Kim
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.909-914
    • /
    • 2016
  • Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing $GSK3{\beta}$-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K. N. Min;K. E. Joung;M. J. Cho;J. Y. An;Kim, D. K.;Y. Y. Sheen
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.181-181
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa Ⅰ and MCF-7 cells using transient transfection system with p1A1-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAt-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HBAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa Ⅰ cells with p1A1-Luc, HDAC inhibitors increased the basal promoter activity only Also, we have investigated the effects of HDAC inhibitors on the human breast and prostate cancer cells in terms of cell proliferation and apoptosis based on SRB assay. IN2001 as well as trichostatin A inhibited the MCF-7, MDA-MB-231, MDA-MB-468, T47D, ZR75-1, PC3 cell growth dose-dependently. The growth inhibition of these cells with HDAC inhibitors was associated with profound morphological change, which suggests the HDAC inhibitors induced apoptosis of cells. The result of cell cycle analysis after 24h exposure of IN2001 showed G2/M cell cycle arrest in MCF-7 cells and apoptosis in T47D and MDA-MB-231 cells.

  • PDF

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.