• Title/Summary/Keyword: MCS Level

Search Result 87, Processing Time 0.032 seconds

Distributed Bit Loading and Power Control Algorithm to Increase System Throughput of Ad-hoc Network (Ad-hoc 네트워크의 Throughput 향상을 위한 적응적 MCS 레벨 기반의 분산형 전력 제어 알고리즘)

  • Kim, Young-Bum;Wang, Yu-Peng;Chang, Kyung-Hi;Yun, Chang-Ho;Park, Jong-Won;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.315-321
    • /
    • 2010
  • In Ad-hoc networks, centralized power control is not suitable due to the absence of base stations, which perform the power control operation in the network to optimize the system performance. Therefore, each node should perform power control algorithm distributedly instead of the centralized one. The conventional distributed power control algorithm does not consider the adaptive bit loading operation to change the MCS (modulation and coding scheme) according to the received SINR (signal to interference and noise ratio), which limits the system throughput. In this paper, we propose a novel distributed bit loading and power control algorithm, which considers the adaptive bit loading operation to increase total system throughput and decrease outage probability. Simulation results show that the proposed algorithm performs much better than the conventional algorithm.

The Suppression Effects of Fat Mass and Obesity Associated Gene on the Hair Follicle-Derived Neural Crest Stem Cells Differentiating into Melanocyte by N6-Methyladenosine Modifying Microphthalmia-Associated Transcription Factor

  • Zhiwei Shang;Haixia Feng;Liye Xia
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Background and Objectives: Melanocyte (MC), derived from neural crest stem cell (NCSC), are involved in the production of melanin. The mechanism by which NCSC differentiates to MC remains unclear. N6-methyladenosine (m6A) modification was applied to discuss the potential mechanism. Methods and Results: NCSCs were isolated from hair follicles of rats, and were obtained for differentiation. Cell viability, tyrosinase secretion and activity, and transcription factors were combined to evaluated the MC differentiation. RT-qPCR was applied to determine mRNA levels, and western blot were used for protein expression detection. Total m6A level was measured using methylated RNA immunoprecipitation (MeRIP) assay, and RNA immunoprecipitation was used to access the protein binding relationship. In current work, NCSCs were successfully differentiated into MCs. Fat mass and obesity associated gene (FTO) was aberrant downregulated in MCs, and elevated FTO suppressed the differentiation progress of NCSCs into MCs. Furthermore, microphthalmia-associated transcription factor (Mitf), a key gene involved in MC synthesis, was enriched by FTO in a m6A modification manner and degraded by FTO. Meanwhile, the suppression functions of FTO in the differentiation of NCSCs into MCs were reversed by elevated Mitf. Conclusions: In short, FTO suppressed the differentiating ability of hair follicle-derived NCSCs into MCs by m6A modifying Mitf.

Development of an Incentive Level Evaluation Technique of Direct Load Control using Sequential Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 직접부하제어의 적정 제어지원금 산정기법 재발)

  • 정윤원;박종배;신중린
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.121-128
    • /
    • 2004
  • This paper presents a new approach for determining an accurate incentive levels of Direct Load Control (DLC) program using sequential Monte Carlo Simulation (MCS) techniques. The economic analysis of DLC resources needs to identify the hourly-by-hourly expected energy-not-served resulting from the random outage characteristics of generators as well as to reflect the availability and duration of DLC resources, which results the computational explosion. Therefore, the conventional methods are based on the scenario approaches to reduce the computation time as well as to avoid the complexity of economic studies. In this paper, we have developed a new technique based on the sequential MCS to evaluate the required expected load control amount in each hour and to decide the incentive level satisfying the economic constraints. In addition, the mathematical formulation for DLC programs' economic evaluations are developed. To show the efficiency and effectiveness of the suggested method, the numerical studies have been performed for the modified IEEE reliability test system.

Application of the Robust and Reliability-Based Design Optimization to the Aircraft Wing Design (항공기 날개 설계를 위한 강건성 및 신뢰성 최적 설계 기법의 적용)

  • 전상욱;이동호;전용희;김정화
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.24-32
    • /
    • 2006
  • Using a deterministic design optimization, the effect of uncertainty can result in violation of constraints and deterioration of performances. For this reason, design optimization is required to guarantee reliability for constraints and ensure robustness for an objective function under uncertainty. Therefore, this study drew Monte Carlo Simulation(MCS) for the evaluation of reliability and robustness, and selected an artificial neural network as an approximate model that is suitable for MCS. Applying to the aero-structural optimization problem of aircraft wing, we can explore robuster optima satisfying the sigma level of reliability than the baseline.

Expanding the MCS of Refinery Process Compressor through Operating-Speed Balancing at 10,500 rpm (정유공정 압축기의 10,500 rpm 운전속도 밸런싱을 통한 MCS의 확장)

  • Lee, An-Sung;Kim, Byung-Ok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.41-46
    • /
    • 2009
  • This paper deals with the operating-speed (high-speed) balancing of a refinery gasoline HDS (hydrodesulfurization) process recycle-gas 8-stages compressor rotor. A low-speed balancing condition of the rotor was measured as maintaining the G2.5 level. But an inspection run of operating-speed balancing condition, using tilting-pad journal bearings of actual use, showed that while it could be continuously-operated safely at a rated speed of 10,500 rpm, the rotor would not be able to run over 11,000 rpm as the vibration increased very sharply, approaching 11,000 rpm. In order to cure that a series of operating-speed balancing, which first calculated balance correction-weights by applying the influence coefficient measured and calculated at 10,500 rpm and then implemented correction works, was carried-out. The final operating-speed balancing results showed that the vibrations at the bearing pedestals represented very good levels of 0.2 mm/s by decreasing to as much as the 1/10 of the original vibrations and particularly, even at a targeted maximum continuous operating speed, MCS, of 11,500 rpm the vibrations represented about 1 mm/s, which is the operating-speed balancing vibration specification of API. Therefore, the expansion of MCS was successfully accomplished through the operating-speed balancing.

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.

A New Reduction Method of the Uplink Information for an Adaptive Modulation and Coding OFDM/FDD System (다중 사용자를 위한 적응형 OFDM/FDD 시스템의 상향링크 정보 축소 방안)

  • 장일순;유병한;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.140-146
    • /
    • 2004
  • In this paper we proposed the reducing method of feedback information for transmitting of adaptable data rate in multi-user OFDMA/FDD systems. In order to transmit downlink channel information to Base-Station(BS) through the limited uplink control channel, the proposed algorithm exploits the channel variation level which describes the similarity among the adjacent clusters and uses just one modulation and coding scheme(MCS) level representing channel information of all clusters'. We investigated the performance in single cell environment. It has a similar overhead for feedback information with conventional algorithm and has better performance in that bandwidth efficiency and outage probability than the conventional algorithms.

Research Trends of Mixed-Criticality System (중요도 혼재 시스템의 연구 동향 분석)

  • Yoon, Moonhyung;Park, Junho;Kim, Yongho;Yi, JeongHoon;Koo, BongJoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.125-140
    • /
    • 2018
  • Due to rapid development of semiconductor technology, embedded systems have been developed from single-functional system to the multi-functional system. The system composed of software that has different criticality level is called Mixed-Criticality System. Currently, the project related to the Mixed-Criticality System is accelerating the efforts to seek the development direction and take technical initiatives led by EU and USA where the related industry has developed, but the movement in Korea is yet insignificant. Therefore, it is urgent to perform the research and project of various basic technologies to occupy the initiative for the related technology and market. In this paper, we analyze the trends of major project researches and developments related to the MCS. First, after defining the definition of the MCS and system model, we analyze the underlying technology constituting the MCS. In addition, we analyze the project trends of each country researching MCS and discuss the future research areas. Through this study, it is possible to grasp the research trends of the world in order to establish the research direction of the MCS and to lay the foundation for the integration into the military system.

A Study on the Power Allocation for AMC Scheme in OFDMA System (OFDMA 시스템에서 AMC를 위한 전력할당 방식에 관한 연구)

  • Kim, Dong-Cheol;Shin, Hyun-Joon;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.192-199
    • /
    • 2005
  • Adaptive Modulation & Coding (AMC) is the method of varying the modulation and coding scheme for the changeable wireless channel environment. WiBro use AMC method because it has a very large variation caused by mobility interference and other cell interference. In this paper, we will compare and analysis the method of selecting the optimum MCS level for the efficiently use of mobile power consumption.

  • PDF

Determination of Incentive Level of Direct Load Control using Monte Carlo Simulation with Variance Reduction Technique (몬테카를로 시뮬레이션을 이용한 직접부하제어의 제어지원금 산정)

  • Jeong Yun Won;Park Jong Bae;Shin Joong Rin;Chae Myung Suk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.666-670
    • /
    • 2004
  • This paper presents a new approach for determining an accurate incentive levels of Direct Load Control (DLC) program using sequential Monte Carlo Simulation (MCS) techniques. The economic analysis of DLC resources needs to identify the hourly-by-hourly expected energy-not-served resulting from the random outage characteristics of generators as well as to reflect the availability and duration of DLC resources, which results the computational explosion. Therefore, the conventional methods are based on the scenario approaches to reduce the computation time as well as to avoid the complexity of economic studies. In this paper, we have developed a new technique based on the sequential MCS to evaluate the required expected load control amount in each hour and to decide the incentive level satisfying the economic constraints. And also the proposed approach has been considered multi-state as well as two-state of the generating units. In addition, we have applied the variance reduction technique to enhance the efficiency of the simulation. To show the efficiency and effectiveness of the suggested method the numerical studies have been performed for the modified IEEE reliability test system.

  • PDF