• Title/Summary/Keyword: MCPs 초미세 발포

Search Result 19, Processing Time 0.032 seconds

초미세 발포 압출 다이 설계를 위한 압력 해석

  • 이보형;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.101-101
    • /
    • 2004
  • 초미세 발포 플라스틱(MCPs; Microcellular Plastics)공정은 기존 발포 플라스틱의 장점을 보존하면서도 그 동안 발포 플라스틱의 단점으로 지적되어온 충격강도, 인성, 경도 등의 기계적 특성저하를 개선하기 위하여 개발되었다. 플라스틱 내에 지름 수 십 $\mu\textrm{m}$ 내외의 기포를 $10^{9}$-$10^{15}$cel1/㎤의 밀도로 발생시키는 초미세 발포공법은 내부의 미세 구조로 인하여 재료비를 절약하면서 우수한 기계적 특성을 나타내는 플라스틱 재료를 성형할 수 있게 하며, 발포제로 초 임계 상태의 불활성 기체($CO_2$, $N_2$, etc)를 사용하기 때문에 기존의 발포 공정에서 발포제로 사용했던 유해 화학 물이나 프레온, 부탄으로 인해 발생할 수 있는 환경 문제를 해결할 수 있다는 장점을 지닌다.(중략)

  • PDF

A Study on the Relation between Cell morphology and Saturation condition in Gas-pellets MCPs (가스-펠릿 초미세 발포 사출 플라스틱 특성 연구)

  • Cha S. W.;Seo Jung-hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.87-92
    • /
    • 2005
  • In microcellular injection molding, gas supply system is needed. But, that device is very expensive to attach to the injection molding machines. So, new method is needed and gas-pellets MCPs is one of the solutions. In gas-pellets MCPs, there will be strange characteristics. In this paper, some characteristics are described on the view point of saturation pressure and saturation time.

Effect of Talc on cell density in foam processing with CO2 (Talc 함유량이 초미세 발포 셀-밀도에 미치는 영향)

  • 이보형;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1406-1409
    • /
    • 2003
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts, for material cost constitutes a large percentage of the total cost of 60%. It may be noted that the price of plastics is directly rotated to the price of petroleum. Material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore microcellular foaming process(MCPs) was studied for solving this problems alternatively in 1980's at M.I.T Until now in MCPs carbon dioxide gas was mainly used for microcellular foaming. Besides, Talc was used for reducing the price of plastics. Consequently, we must certificate using the Talc in MCPs according to contents of the Talc.

  • PDF

The shrinkage characteristics of MCPs (Micro Cellular Plastics) (초미세 발포 플라스틱의 수축률 변화)

  • Seo, Jung-Hwan;Cha, Sung-Woon;Hyun, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1160-1164
    • /
    • 2004
  • Generally in the case of parts used for precision products, tolerance of parts is very small. So inaccuate size of molding parts generates serious problems. Therefore, it's necessary to secure data about shrinkage on each condition or study about manufacturing process which reduces shrinkage. To apply MCPs to manufature of plastic product, this paper verifies how the amount of gas and Talc can affect to cell-morphology, and examines the relation between shrinkage and cell-morphology by using ASTM specimen formed by MCPs process.

  • PDF

Study of Sound Absorption & Transmission Characteristics for MCPs Foaming rate by Batch Process (MCPs Closed Cell 의 발포율에 따른 흡차음 특성 연구)

  • 이병희;차성운;강연준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.364-368
    • /
    • 2004
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. This research based on the experiment of sound absorption & transmission characteristics inquire into acoustic property of Micro Cellular Plastics. This experiment clarify the change of cell foaming rate for foaming time and the change of sound absorption & transmission for foaming rate.

  • PDF

The Insulation Property of Microcellular Injection Molding Plastics (초미세 발포 사출 성형품의 단열 특성)

  • Lee, Jung-Hyun;Hong, Soon-Kug;Kim, Ji-Hyun;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.263-268
    • /
    • 2001
  • MCPs means Micro Cellular Plastics. The micro-cells are generated in the products by the difference of dissolution through the pressure drop after super critical fluid of CO2 or N2 dissolves into polymer. We have developed injection molding process adopting MCPs and applied it to a broad range of injection molded thermoplastic materials and applications. It can prevent the leakage of impact strength and increase the thermal conductivity, moreover regulate the thermal conductivity. Then we can develop the high strength foaming plastics. Also, it can be gained a competitive advantage by utilizing its processing benefits, e.g. the lightweight products and significant reductions in material consumption.

  • PDF

공리적 설계를 이용한 초미세 발포 공정 설계

  • Jeong, Dae-Jin;Cha, Sung-Woon;Yoon, Jae-Dong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.195-200
    • /
    • 2001
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts, for material cost constitutes up to 75% of the total production cost. Plastics do not easily decay which causes environmental problem. Furthermore, material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore, microcellular foamed plastics(MCPs) was developed at MIT to solve these problem alternation 1980's. Until now, however, microcellular foaming process not designed systematically because the key factors governing the process were not clear. The goal of this research is to obtain the optimal design of the microcellular plastics by using axiomatic approach.

  • PDF

Formation of cell under $1\mu{m}$ by quenching (Quenching을 이용한 $1\mu{m}$ 미만의 Cell 형성)

  • Lee B.H.;Cha S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1420-1423
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. Reduction of MCPs cell size increases the intensity of MCPs. This research based on the experiment about cell size reduction method. At this study, Quenching & Pressure foaming process are introduced to one of methods. Conclusion of study is that Quenching process is the simplest process for nano cell formation.

  • PDF

MCPs의 셀 크기에 따른 진동감쇠특성 연구

  • 이병희;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.100-100
    • /
    • 2004
  • 미국에서 발명된 초미세 발포기술은 기존의 발포공법과는 달리, 가스(CO2, N2)에 의해 재료에 생성된 기포(셀)의 크기가 loom이하인 작은 셀이 재료 내에 고르게 분포되도록 하여, 기존의 발포재료보다 나은 기계적 특성을 유지하도록 하였다. 그 결과, 제품의 재료비를 절감하기 위해 연구된 MCPs는 기존의 발포기술과는 달리 재료의 기계적 강도 저하를 극복하고 충격 강도와 인성의 향상을 가져왔다. 그리하여, 현재 국내의 자동차업체의 범 퍼 및 내장재로의 사용을_시작으로 산업의 다각적인 분야에 이용되고 있다.(중략)

  • PDF