• Title/Summary/Keyword: MCF-7 cancer cells

Search Result 606, Processing Time 0.027 seconds

Investigation of Antitumor Effects of Sorafenib and Lapatinib Alone and in Combination on MCF-7 Breast Cancer Cells

  • Kacan, Turgut;Altun, Ahmet;Altun, Gulsah Gultekin;Kacan, Selen Baloglu;Sarac, Bulent;Seker, Mehmet Metin;Bahceci, Aykut;Babacan, Nalan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3185-3189
    • /
    • 2014
  • Background: Breast cancer evolution and tumor progression are controlled by complex interactions between steroid receptors and growth factor receptor signaling. Aberrant growth factor receptor signaling can augment or suppress estrogen receptor function in hormone-dependent breast cancer cells. Thus, we aimed to investigate antitumor effects of sorafenib and lapatinib alone and in combination on MCF-7 breast cancer cells. Materials and Methods: Cytotoxicity of the sorafenib and lapatinib was tested in MCF-7 cells by XTT assays. 50, 25, 12.5 and $6.25{\mu}M$ concentrations of sorafenib and 200, 100, 50 and $25{\mu}M$ concentrations of lapatinib were administered alone and in combination. Results were evaluated as absorbance at 450nM and $IC_{50}$ values are calculated according to the absorbance data Results: Both sorafenib and lapatinib showed concentration dependent cytotoxic effects on MCF-7 cells. Sorafenib exerted cytotoxic effects with an $IC_{50}$ value of $32.0{\mu}M$; in contrast with lapatinib the $IC_{50}$ was $136.6{\mu}M$. When sorafenib and lapatinib combined, lapatinib increased cytotoxic effects of sorafenib at its ineffective concentrations. Also at the concentrations where both drugs had cytotoxic effects, combination show strong anticancer effects and killed approximately 70 percent of breast cancer cells. Conclusions: Combinations of tyrosine kinase inhibitors and cytotoxic agents or molecular targeted therapy has been successful for many types of cancer. The present study shows that both sorafenib and lapatinib alone are effective in the treatment of breast cancer. Also a combination of these two agents may be a promising therapeutic option in treatment of breast cancer.

Effects of Indole Oligomers Induced from Indole-3-carbinol on the Growth of MCF-7 Breast Cancer Cells

  • Kang, Kap-Suk;Leonard F. Bjeldanes
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.163-168
    • /
    • 1998
  • Inhibitory effect of indole oligomers induced from indole-3-carbinol(I3C) on the growth of breast cancer cells was studied. We gernerated the reaction mixtures (RXM) at ambient temperature by treating a stirred aqueous solution of I3C (typeically 0.25ml) at a concentration of 12 $\mu$mol/ml) with hydrochloric acid (typically 28$\mu$l of a 1 mmol/ml solution). RXM was fractionated by the column chromatography. The fractions with similar UV-pattern were further fractionated by HPLC and 3.3'-diindoylmethane (DIM) and other indole oligomers were identified. I3C, RXM, and it derived indole compounds were added to MCF-7 cells and cultured in the presence of 10-7M estradiol for 7 days. the growth-inhibitory effect of I3C and DIM on the growth of MCF-7 cell was very strong. The synthetic DIM also revealed antiproliferative effect on MCF-7 cel. The fractions containing high DIM content (77%), were most effective in inhibiting MCF-7 cell growth induced by estradiol. With these results, we suggest that I3C and DIM might have anticarcinogenic effect on the breast cancer.

  • PDF

Estudy the Effect of Breast Cancer on Tlr2 Expression in Nb4 Cell

  • Amirfakhri, Siamak;Salimi, Arsalan;Fernandez, Nelson
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8445-8450
    • /
    • 2016
  • Background: Breast cancer is the most common neoplasm in women and the most frequent cause of death in those between 35 and 55 years of age. All multicellular organisms have an innate immune system, whereas the adaptive or 'acquired' immune system is restricted to vertebrates. This study focused on the effect of conditioned medium isolated from cultured breast cancer cells on NB4 neutrophil-like cells. Materials and Methods: In the current study neutrophil-like NB4 cells were incubated with MCF-7 cell-conditioned medium. After 6 h incubation the intracellular receptor TLR2, was analyzed. Results: The results revealed that MCF-7 cell-conditioned medium elicited expression of TLR2 in NB4 cells. Conclusions: This treatment would result in the production of particular stimulants (i.e. soluble cytokines), eliciting the expression of immune system receptors. Furthermore, the flow cytometry results demonstrated that MCF-7 cell-conditioned medium elicited an effect on TLR2 intracellular receptors.

Methyl Linderone Suppresses TPA-Stimulated IL-8 and MMP-9 Expression Via the ERK/STAT3 Pathway in MCF-7 Breast Cancer Cells

  • Yoon, Jae-Hwan;Pham, Thu-Huyen;Lee, Jintak;Lee, Jiyon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jae-Wook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • Methyl linderone (ML), a cyclo-pentenedione, was isolated from the fruit of Lindera erythrocarpa Makino (family Lauraceae). This plant has well-known anti-inflammatory effects; however, the anti-cancer effects of ML have not yet been reported. Thus, in the present study we investigated the effects of ML on the metastasis of human breast cancer cells. We used 12-O-tetradecanoyl phorbol-13-acetate (TPA)-stimulated MCF-7 cells as the cell model to study the effects of ML on invasion and migration. ML was found to reduce the invasion and migration rate of TPA-stimulated MCF-7 cells. Moreover, it inhibited two metastasis-related factors, matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8), at the mRNA and protein expression levels, in TPA-treated MCF-7 cells. The mechanism by which ML exerted these effects was through the inhibition of translocation of activator protein-1 (AP-1) and signal transducer and activator of transcription-3 (STAT3), mediated via phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, our findings indicated that ML attenuated the TPA-stimulated invasion and migration of MCF-7 cells by suppressing the phosphorylation of ERK and its downstream factors, AP-1 and STAT3. Therefore, ML is a potential agent for the treatment of breast cancer metastasis.

Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine

  • Lee, Ha-Na;Jin, Hyeon-Ok;Park, Jin-Ah;Kim, Jin-Hee;Kim, Ji-Young;Kim, BoRa;Kim, Wonki;Hong, Sung-Eun;Lee, Yun-Han;Chang, Yoon Hwan;Hong, Seok-Il;Hong, Young Jun;Park, In-Chul;Surh, Young-Joon;Lee, Jin Kyung
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.327-335
    • /
    • 2015
  • Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic ${\alpha},{\beta}$-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine.

Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer

  • Paek, A Rome;Mun, Ji Young;Hong, Kyeong-Man;Lee, Jongkeun;Hong, Dong Wan;You, Hye Jin
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.621-627
    • /
    • 2017
  • We previously reported the involvement of zinc-finger protein 143 (ZNF143) on cancer cell motility in colon cancer cells. Here, ZNF143 was further characterized in breast cancer. Immunohistochemistry was used to determine the expression of ZNF143 in normal tissues and in tissues from metastatic breast cancer at various stages. Notably, ZNF143 was selectively expressed in duct and gland epithelium of normal breast tissues, which decreased when the tissue became malignant. To determine the molecular mechanism how ZNF143 affects breast cancer progression, it was knocked down by infecting benign breast cancer cells with short-hairpin (sh) RNA-lentiviral particles against ZNF143 (MCF7 sh-ZNF143). MCF7 sh-ZNF143 cells showed different cell-cell contacts and actin filament (F-actin) structures when compared with MCF7 sh-Control cells. In migration and invasion assays, ZNF143 knockdown induced increased cellular motility in breast carcinoma cells. This was reduced by the recovery of ZNF143 expression. Taken together, these results suggest that ZNF143 expression contributes to breast cancer progression.

In Vitro Cytotoxic Activity of Seed Oil of Fenugreek Against Various Cancer Cell Lines

  • Al-Oqail, Mai Mohammad;Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1829-1832
    • /
    • 2013
  • In the present study, investigations were carried out to screen the anticancer activities of fenugreek seed oil against cancer cell lines (HEp-2, MCF-7, WISH cells), and a normal cell line (Vero cells). Cytotoxicity was assessed with MTT and NRU assays, and cellular morphological alterations were studied using phase contrast light microscopy. All cells were exposed toi 10-1000 ${\mu}g/ml$ of fenugreek seed oil for 24 h. The results show that fenugreek seed oil significantly reduced the cell viability, and altered the cellular morphology in a dose dependent manner. Among the cell lines, HEp-2 cells showed the highest decrease in cell viability, followed by MCF-7, WISH, and Vero cells by MTT and NRU assays. Cell viability at 1000 ${\mu}g/ml$ was recorded as 55% in HEp-2 cells, 67% in MCF-7 cells, 75% in WISH cells, and 86% in Vero cells. The present study provides preliminary screening data for fenugreek seed oil pointing to potent cytotoxicity against cancer cells.

Differentially Expressed Proteins in ER+ MCF7 and ER- MDA-MB-231 Human Breast Cancer Cells by RhoGDI-α Silencing and Overexpression

  • Hooshmand, Somayeh;Ghaderi, Abbas;Yusoff, Khatijah;Thilakavathy, Karuppiah;Rosli, Rozita;Mojtahedi, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3311-3317
    • /
    • 2014
  • Background: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDI${\alpha}$) activity on migration and invasion of estrogen receptor positive ($ER^+$) and negative ($ER^-$) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDI${\alpha}$ and other proteins interacting directly or indirectly with RhoGDI${\alpha}$ in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. Materials and Methods: $ER^+$ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDI${\alpha}$ using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDI${\alpha}$. Results: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDI${\alpha}$ in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDI${\alpha}$ in MCF7, while only one protein was identified in the upregulation of RhoGDI${\alpha}$ in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-${\alpha}$ activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Conclusions: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDI${\alpha}$ with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

Apoptosis Induction of MCF-7 Human Breast Carcinoma Cells by Butein (Butein에 의한 MCF-7 유방암 세포의 세포사멸에 의한 항암 효과)

  • Song, Ba-Da;Kim, Sun-Rye;Kim, Sung-Hun;Shin, Yong-Cheol;Ko, Seong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.385-389
    • /
    • 2010
  • Butein(3,4,2',4-tetrahydroxychalcone) has been reported anticancer effects in several cancer type, which is prostate, bladder cancer but breast cancer is not. This study was to investigate the antiproliferative effects by butein(3,4,2',4-tetrahydroxychalcone) in MCF-7 human breast carcinoma cells. We invastigated the effects of dose-dependently cell growth inhibition by butein, which could be proved by WST-1 assay. Also, flow cytometry analysis was butein increase percentage of subG1 phase. As well as, butein induces apoptosis through the expression of caspase-8,-3 and poly(ADP-ribose) polymerase(PARP) activation but not in DMSO treated cells. Taken together, this results suggest that butein induced MCF-7 apoptosis through extrinsic pathway and thus may have potential tumor suppressor in breast cancer.

Effects of Green Tea Extract on the p53 Pathway in the MCF-7 Breast Cancer Cell Line (유방암 세포 주 MCF-7에서의 녹차 추출물이 p53 경로에 미치는 영향)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1316-1320
    • /
    • 2018
  • The effects of a green tea extract (GTE) were examined using the MCF-7 human breast cancer cell line. Cell viability assays using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that GTE had a significant cytotoxic effect on MCF-7 cells, depending on the concentration of GTE. Western blotting of p53 and its related proteins, p21/cip1 and CDK2, after GTE treatment revealed that a significant and concentration dependent increase in p53 protein in response to GTE. The levels of p21/cip1 proteins were also increased at low GTE concentrations were significantly increased even at the highest GTE concentrations. However, the level of CDK2 was significantly decreased by treatment with high concentrations of GTE. These results indicate that treatment with GTE increased the p53 level in MCF-7 cells, and this activation of p53 markedly elevated the levels of p21/cip1proteins, which, in turn, inhibited CDK2 expression in the MCF-7 cells. The inhibition of CDK2 expression might then affect cell cycle progression. Subsequent FACS analysis indicated that GTE treatment the gradually increased progression of the MCF-7 to the G1 phase. These results clearly demonstrate that the anti-tumor effect of GTE in MCF-7 cells is regulated by p53 arrest of the MCF-7 cells at the G1 stage of cell cycle.