• 제목/요약/키워드: MC3T3-E1

검색결과 268건 처리시간 0.026초

Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells

  • Seo, Hyun-Ju;Cho, Young-Eun;Kim, Tae-Wan;Shin, Hong-In;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • 제4권5호
    • /
    • pp.356-361
    • /
    • 2010
  • Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 1, 3, 15, 25 uM) along with a normal osteogenic medium (OSM) as control for 1, 5, 10 days. As measured by MTT assay for mitochondrial metabolic activity, cell proliferation was stimulated even at low zinc treatment (1-3 ${\mu}M$) compared to OSM, and it was stimulated in a zinc concentration-dependent manner during 5 and 10 days, with the most pronounced effect at 15 and 25 uM Zn. Cellular (synthesized) alkaline phosphatase (ALP) activity was increased in a zinc concentration-dependent manner, so did medium (secreted) ALP activity. Cellular collagen concentration was increased by zinc as time went by, therefore with the maximum zinc stimulatory effect in 10 days, and medium collagen concentration showed the same pattern even on 1 and 5 day. This zinc stimulatory effect of collagen synthesis was observed in cell matrix collagen staining. The study results imply that zinc can increase osteogenic effect by stimulating cell proliferation, ALP activity and collagen synthesis in osteoblastic cells.

Allelic variation of melanocortin-1 receptor locus in Saudi indigenous sheep exhibiting different color coats

  • Mahmoud, Ahmed H.;Mashaly, Ashraf M.;Rady, Ahmed M.;Al-Anazi, Khalid M.;Saleh, Amgad A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.154-159
    • /
    • 2017
  • Objective: This study was designed to characterize the DNA polymorphisms of the melanocortin-1 receptor (MC1R) gene in indigenous Saudi Arabian sheep breeds exhibiting different color coats, along with individuals of the Sawaknee breed, an exotic sheep imported from Sudan. Methods: The complete coding region of MC1R gene including parts of 3' and 5' untranslated regions was amplified and sequenced from three the indigenous Saudi sheep; Najdi (generally black, n = 41), Naeimi (generally white with brown faces, n = 36) and Herri (generally white, n = 18), in addition to 13 Sawaknee sheep. Results: Five single nucleotide polymorphisms (SNPs) were detected in the MC1R gene: two led to nonsynonymous mutations (c.218 T>A, p.73 Met>Lys and c.361 G>A, p.121 Asp>Asn) and three led to synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu, and c.735 C>T, p.245 Ile>Ile). Based on these five SNPs, eight haplotypes representing MC1R $E^d$ and $E^+$ alleles were identified among the studied sheep breeds. The most common haplotype (H3) of the dominant $E^d$ allele was associated with either black or brown coat color in Najdi and Sawaknee sheep, respectively. Two other haplotypes (H6 and H7) of $E^d$ allele, with only the nonsynonymous mutation A218T, were detected for the first time in Saudi indigenous sheep. Conclusion: In addition to investigating the MC1R allelic variation in Saudi indigenous sheep populations, the present study supports the assumption that the two independent nonsynonymous Met73Lys and Asp121Asn mutations in MC1R gene are associated with black or red coat colors in sheep breeds.

Sodium fluoride와 Sodium orthovanadate가 조골세포주 MC3T3-E1에 미치는 영향에 관한 연구 (THE EFFECT OF SODIUM FLUORIDE AND SODIUM ORTHOVANADATE ON OSTEOBLASTIC CELL LINE MC3T3-E1 CELLS)

  • 김원진;정규림
    • 대한치과교정학회지
    • /
    • 제21권1호
    • /
    • pp.97-111
    • /
    • 1991
  • It is the aim of this study to investigate the effects of sodium fluoride and sodium orthovanadate upon the proliferation and activity of the osteoblast (MC3T3-E1 cells). MC3T3-E1 cells were cultured in $\alpha-MEM$ containing $10\%$ FBS and various concentration of sodium fluoride and sodium orthovanadate was appended to serum free media. DNA synthesis was examined through the $[^3H]$ thymidine incorporation into DNA. Collagen synthesis was examined through the $[^3H]$ proline incorporation into collagenase digestible protein and noncollagen protein. The following results were drawn; 1. Sodium fluoride stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M$ to $10{\mu}M$ (P < 0.005). 2. Sodium orthovanadate stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M\;to\;8{\mu}M$, however showed diminution at $10{\mu}M$ (P < 0.001). 3. Sodium fluoride and sodium orthovanadate stimulated the percent collagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M$ to $10{\mu}M$ (P < 0.001). 4. Sodium fluoride and sodium orthovanadate stimulated the noncollagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M\;to\;10{\mu}M$ (P < 0.001). In conclusion, sodium fluoride and sodium orthovanadate stimulate the proliferation and activity of osteoblast by stimulation of DNA synthesis and collagen and noncollagen synthesis in osteoblast.

  • PDF

Ipriflavone이 골 세포주(MC3T3-E1 cell line)의 Collagen합성에 미치는 영향 (EFFECTS OF IPRIFLAVONE ON COLLAGEN SYNTHESIS OF OSTEOBLAST-LIKE CELLS(MC3T3-E1 CELL LINE))

  • 양윤석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제19권4호
    • /
    • pp.395-398
    • /
    • 1997
  • Ipriflavone(IP)은 골흡수 억제효과에 골형성 촉진효과를 지니는 약물로 보고되어 왔다. 이러한 IP의 특성때문에 골의 치유를 촉진시키기 위한 약물로서 구강외과 영역에서 쓰일 수도 있으리라 생각되었다. 이에 저자는 그동안 보고되어온 IP의 골 형성 촉진효과가 실제로 나타나는지를 확인하고 또한 어떤 농도에서 나타나는지를 알아보기위해 IP를 서로다른 농도로 하여 골세포주(MC3T3-El cell line)의 배지에 넣은후, 골 형성의 지표로 쓰일수있는 collagen합성정도를 보고자 하였으며 이 자료를 앞으로서 in vivo 동물실험 연구의 기초자료로 사용코자 하였다. 본 연구에서 IP의 골형성 촉진효과를 collagen 합성정도를 측정을 통해 확인하였고, 특히 IP이 $10^{-7}M$농도일때 현저한 collagen합성의 증가를 관찰 하였으며 앞으로의 동물실험등을 통해 구강외과 영역에서의 사용가능성에 대해 좀더 연구해 보고자 한다.

  • PDF

골아세포가 배양된 치과 임플란트용 Ti-Ta합금의 전기화학적 특성 (Electrochemical Characteristics of Osteoblast Cultured Ti-Ta Alloy for Dental Implant)

  • 김원기;최한철;고영무
    • 한국표면공학회지
    • /
    • 제41권2호
    • /
    • pp.69-75
    • /
    • 2008
  • Electrochemical behaviors of surface modified and MC3T3-E1 cell cultured Ti-30Ta alloys have been investigated using various electrochemical methods. The Ti alloys containing Ta were melted by using a vacuum furnace and then homogenized for 6 hrs at $1000^{\circ}C$. MC3T3-E1 cell culture was performed with MC3T3-E1 mouse osteoblasts for 2 days. The microstructures and corrosion resistance were measured using FE-SEM, XRD, EIS and potentiodynamic test in artificial saliva solution at $36.5{\pm}1^{\circ}C$. Ti-Ta alloy showed the martensite structure of ${\alpha}+{\beta}$ phase and micro-structure was changed from lamellar structure to needle-like structure as Ta content increased. Corrosion resistance increased as Ta content increased. Corrosion resistance of cell cultured Ti-Ta alloy increased predominantly in compared with non cell cultured Ti- Ta alloy due to inhibition of the dissolution of metal ion by covered cell. $R_p$ value of MC3T3-E1 cell cultured Ti-40 Ta alloy showed $1.60{\times}10^6{\Omega}cm^2$ which was higher than those of other Ti alloy. Polarization resistance of cell-cultured Ti-Ta alloy increased in compared with non-cell cultured Ti alloy.

MC3T3 preosteoblast cell line의 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed에 의한 fluorescent labelling (FLUORESCENT LABELLING OF MC3T3 CELL LINE BY 5-(AND-6)-CARBOXY-2', 7'-DICHLOROFLUORESCEIN DIACETATE, SUCCINIMIDYL ESTER MIXED)

  • 국민석
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권6호
    • /
    • pp.461-467
    • /
    • 2005
  • Background. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed (CFSE) is the fluorescent labelling agent of living cells and used to trace the cells in vivo after transplatnation of various cells. The CFSE labelled cells can maintain fluorescence for up to 7 days after labelling. The MC3T3-E1 cell line (MC3T3) has been used for many studies about osteoblast, which is well known as a mouse preosteoblast. So the CFSE would be used to trace the transplanted MC3T3. However there are few reports about CFSE labelling of MC3T3. This study is aimed to know about adequate concenturation and incubation time of CFSE to MC3T3. Materials and methods. The MC3T3 was incubated in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ using ${\alpha}$-minimal essential medium (${alpha}$-MEM) containing10% FBS and gentamycin. Ten mM CFSE solution in dimethylsulphoxide (DMSO: 1%) was diluted with phosphate buffered saline (PBS) and final concentration of culture medium was, respectively, 5, 10, 15, 20, 25 and 30 ${{\mu}M$. Then the MC3T3 was incubated with CFSE in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ for 5, 10, 15, 20, 25, 30, 35, 40 and 45 minutes in each concentration. The fluorescence of CFSE labelled cells was analysed with a inverted fluorescence microscope. The duration of cell labelling was also studied. Trypan blue dye exclusion test was done for cell viability. Results. For concentration between 5 and 10 ${\mu}M$, CFSE did not significantly label the MC3T3 in vitro. The destruction of MC3T3 was observed at the concentration of 20 ${\mu}M$. In the concentration of 15 ${\mu}M$, the best labelling was obtained at an incubation period between 15 and 30 minutes. The MC3T3 labelled with an incubation period of 15 minutes at 15 ${\mu}M$ was still fluorescent 7 days after CFSE labelling. The mean cell viability was 95.93%. Conclusion. These results suggests an incubation period of 15 minutes at 15 ${\mu}M$ of CFSE provides best labelling of MC3T3 in vitro.

세포친화적 하이드로젤의 기계적 물성이 세포 표현형 제어에 미치는 영향 (Effect of the Mechanical Properties of Cell-Interactive Hydrogels on a Control of Cell Phenotype)

  • 김도윤;박홍현;이근용
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.412-417
    • /
    • 2015
  • 조직공학에 있어서 고분자 지지체의 물성은 세포의 부착, 이동, 성장 및 분화에 영향을 미치는 중요한 요소 중 하나이다. 이 논문에서는 다양한 강성을 가지는 세포 친화적인 알긴산 하이드로젤을 제조하고 골모세포(MC3T3-E1)와 심근세포(H9C2)를 2차원 배양한 후, 각 세포의 부착 및 성장을 연구하였다. 골조직에서 유래한 MC3T3-E1 세포는 하이드로젤의 강성도가 증가함에 따라 성장이 촉진되었지만 근육조직 유래의 H9C2 세포는 오히려 감소하였다. 재생하고자 하는 조직의 종류에 따라 지지체의 기계적인 물성을 변화시켜서 세포의 부착 및 성장을 제어하는 것은 조직공학적으로 조직 및 장기를 개발하는 데 있어서 중요한 역할을 할 것이다.

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Oleanolic acid 및 그 유도체가 MC3T3-E1 조골세포주의 분화에 미치는 효과 (Effects of Oleanolic Acid and its Derivatives on the Differentiation of MC3T3-E1 Osteoblastic Cell)

  • 김세원;이창호;정희경;조성신;이홍기;박용순
    • 한국약용작물학회지
    • /
    • 제19권6호
    • /
    • pp.491-500
    • /
    • 2011
  • Ursolic acid, triterpenoid compound has been shown to stimulate osteoblast differentiation and enhance bone formation. In the present study, we examined the effects of similar triterpenoid compounds, oleanolic acid (OA) and its derivatives, such as oleanolic acid acetate (OAA) and oleanolic acetate methyl ester (OAM) on the bone formation in MC3T3-E1 osteoblast cells. We determined cellular proliferation, alkaline phosphatase (ALP) activity, mineralization, and expression of osteoblast specific genes and mitogen activated protein kinase phosphorylation. Treatment of $0.1-10{\mu}m$ OA, OAA, and OAM increased cellular proliferation, but not significantly increased as compared with dimethyl sulfoxide (DMSO). OA, OAA, and OAM at 5uM concentration enhanced ALP expression, mineralization, and osteocalcin (OCN) mRNA level. In conclusion, OA and its derivatives stimulated the osteoblast differentiation by increasing ALP, mineralization, and OCN mRNA expression. However, there were no significantly difference on osteoblast differentiation among treatment of OA, OAA, and OAM.

Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells

  • Park, Mi Hwa;Kim, Seoyeon;Cheon, Jihyeon;Lee, Juyeong;Kim, Bo Kyung;Lee, Sang-Hyeon;Kong, Changsuk;Kim, Yuck Yong;Kim, Mihyang
    • Nutrition Research and Practice
    • /
    • 제10권2호
    • /
    • pp.148-153
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS: A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS: The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS: The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs.