• Title/Summary/Keyword: MC3T3-E1

Search Result 272, Processing Time 0.023 seconds

Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways

  • Kim, Do-Yeon;Jung, Mi-Song;Park, Young-Guk;Yuan, Hai Dan;Quan, Hai Yan;Chung, Sung-Hyun
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.659-664
    • /
    • 2011
  • As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).

Zinc Deficiency Decreased Alkaline Phosphatase Expression and Bone Matrix Ca Deposits in Osteoblast-like MC3T3-E1 Cells

  • Cho Young-Eon;Lomeda Ria-Ann R.;Kim Yang-Ha;Ryu Sang-Hoon;Choi Je-Yong;Kim Hyo-Jin;Beattie John H.;Kwun In-Sook
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.242-249
    • /
    • 2005
  • It is well established that zinc plays an important role in bone metabolism and mineralization. The role of zinc in bone formation is well documented in animal models, but not much reported in cell models. In the present study, we evaluated zinc deficiency effects on osteoblastic cell proliferation, alkaline phosphatase activity and expression, and extracellular matrix bone nodule formation and bone-related gene expression in osteoblastic MC3T3-E1 cells. To deplete cellular zinc, chelexed-FBS and interpermeable zinc chelator TPEN were used. MC3T3-E1 cells were cultured in zinc concentration-dependent (0-15 ${\mu}M\;ZnCl_2$) and time-dependent (0-20 days) manners. MC3T3-E1 cell proliferation by MTT assay was increased as medium zinc level increased (p<0.05). Cellular Ca level and alkaline phosphatase activity were increased as medium zinc level increased (p<0.05). Alkaline phosphatase expression, a marker of commitment to the osteoblast lineage, measured by alkaline phosphatase staining was increased as medium zinc level increased. Extracellular calcium deposits measured by von Kossa staining for nodule formation also appeared higher in Zn+(15 ${\mu}M\;ZnCl_2$) than in Zn-(0 ${\mu}M\;ZnCl_2$). Bone formation marker genes, alkaline phosphatase and osteocalcin, were also expressed higher in Zn+ than in Zn-. The current work supports the beneficial effect of zinc on bone mineralization and bone-related gene expression. The results also promote further study as to the molecular mechanism of zinc deficiency for bone formation and thus facilitate to design preventive strategies for zinc-deficient bone diseases.

Effect of Sambucus sieboldiana Extract on the Cell Growth and Extracellular Matrix Formation in Osteoblast Cells

  • Kim, Jeongsun;Cho, Seon-Ho;Park, Jong-Tae;Yu, Sun-Kyoung;Kim, Su-Gwan;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • Sambucus sieboldiana (SS) is a member of the family Caprifoliaceae and has been recommended as a functional material because of its several bioactivities. Although numerous literatures are available on the pharmacological and biological activities, the biological activity of SS in bone regeneration process has not yet been well-defined. Therefore, in this study, the effect of SS was investigated in the proliferation and differentiation of MC3T3-E1 osteoblastic cell line. The treatment of SS did not significantly affect the cell proliferation in MC3T3-E1 cells. SS significantly accelerated the mineralization and significantly increased the expression of alkaline phosphatase (ALP) and osteocalcin (OC) mRNAs, compared to the control, in the differentiation of MC3T3-E1 cells. SS significantly accelerated the decrease of osteonectin (ON) mRNA expression as compared with the control in a time-dependent manner in the differentiation of MC3T3-E1 cells. These results suggest that the SS facilitate the osteoblast differentiation and mineralization in MC3T3-E1 osteoblastic cells. Therefore, there may be potential properties for development and clinical application of bone regeneration materials.

EFFECT OF EMD ON HUMAN PERIODONTAL LIGAMENT-DERIVED CELLS AND OSTEOBLAST-LIKE CELLS (MC3T3-E1) IN HIGH GLUCOSE CONDITION (고농도 포도당 환경에서 EMD(Enamel Matrix Derivatives)가 인간 치주인대 세포와 뼈모세포양 세포(MC3T3-E1)에 미치는 영향)

  • Lee, Baek-Soo;Kim, Sun-Wook;Jue, Sung-Sook;Kwon, Yong-Dae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.532-536
    • /
    • 2008
  • Purpose: This study was designed to evaluate effect of EMD on proliferation of HPDLCs and MC3T3-E1 cells in high glucose condition in vitro. Material and method: The Human PDL fibroblasts(HPDLCs) were obtained through typical way and the cells used in this experiment were divided in 4 groups. $1{\times}10^4/ml$ HPDLCs suspension was cultured in typical DMEM and assigned to group 1. The cells cultured in DMEM which included 400mg/dl glucose are allocated to group 3. Group 2 and 4 are established by adding EMD to group 1 and 3 respectively. These control and experimental groups had been cultured for 24 and 48 hours, and MTT assay was conducted. The differences of each group in cellular proliferation was evaluated. The same experiment was conducted for preosteoblast (MC3T3-E1) with adding $25\;{\mu}g/ml$ EMD. Results: EMD had the same effect on both PDL cells and MCT3T3-E1 cells. The experimental group had more meaningful differences and active cellular proliferation than the control group did. The EMD accelerated cellular proliferation not only in normal glucose condition but also in high glucose condition. The same results were observed via MTT assay; EMD-added experimental group had more meaningful differences and showed higher cellular activity than control group did. Each experimental and control group was inspected for statistical significance through Kruskal-Wallis Test. Statistical significances were observed among these groups. (SPSS 12.0 Chicago, IL, USA, p=0.008, p=0.011) Conclusion: EMD is considered to accelerate proliferation of PDL cells and MC3T3-E1 cells in high glucose condition as well as normal glucose condition.

THE EFFECTS OF VANADIUM OXIDE & SODIUM ORTHOVANADATE ON MURIN OSTEOBLAST-LIKE (MC3T3-E1) CELLS (Vanadium 화합물이 조골세포주 MC3T3-El에 미치는 영향에 관한 연구)

  • Kwon, Ki-Youl;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.17-35
    • /
    • 1994
  • Vanadium is an essential trace element but has not been identified with a specific biogical role. To study the direct effects of vanadium on osteoblast, we incubated murin osteoblast-like (MC3T3-El) cells with various corcentration of vanadium oxide & sodium orthovanadate. This study was designed to investigate the effect of vanadium on DNA synthesis, alkaline phosphatase (ALP) activity, cAMP formation responsive to parathormone(PTH) and type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level in murin osteoblast-like (MC3T3-El) cells. The cells were cultured in $\alpha-minimal$ essential medium$(\alpha-MEM)$ supplemented with $10\%$ fetal bovine serum (FBS) and then changed to $0.1\%$ FBS with various concenoation of vanadium oxide & sodium orthovanadate. Quiescent cultured MC3T3-El cells incubated for 24 hours with 2,5,10,15,20 ${\mu}M$ vanadium oxide incorporated $[^3H]Thymidine;$ every concentration showed increases in $[^3H]Thymidine$ incorporations dose dependant manner, the greatest response occurred at $20{\mu}M$. Quiescent cultured MC3T3-E1 cells incubated for 3days with 2,5,10,15,20 ${\mu}M$ vanadium oxide, for 2days with sodium orthovanadate and alkaline phosphatase was assayed with disodium phenyl phosphate as substrate. Vanadium oxide increased the alkaline phosphatase content in MC3T3-El cells at $2{\mu}M\;&\;6{\mu}M$ ; the greatest response occurred at $2{\mu}M$. But decreased at other content sodium orthovanadate increased alkaline phosphatase content in MC3T3-El cells at all concenoation ; the greatest response occurred at $4{\mu}M$. Quiescent cultured MC3T3-El cells incubated for 3days with $5,10{\mu}M$ vanadium oxide , with $5,8{\mu}M$ sodium orthovanadate and cAMP formation was measured by Radioimmunoassay(RIA). Vanadium oxide & sodium orthovanadate showed the tendency of inhibitory effects on cAMP responsiveness to PTH in MC3T3-El cells. Quiescent cultured MC3T3-El cells incubated for 24hours with $10,20{\mu}M$ vanadium oxide, with $5,10{\mu}M$ sodium orthovanadate and Type I $\alpha$ 2 collagen ribonucleic acid (mRNA) expression was studied by Nothern blot analysis. Northern blot analysis of vanadium oxide treated cells showed decreasing effects 0& sodium orthovanadate revealed increasing effects in type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level.

  • PDF

Effects of Mechanical Stimulation for MC3T3-E1 Cells using Bioreactor (바이오리액터를 이용한 MC3T3-E1 세포의 기계적 자극에 대한 영향)

  • Lee, In-Hwan;Park, Jeong-Hun;Lee, Seung-Jae;Cho, Dong-Woo;Kang, Sang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1411-1414
    • /
    • 2008
  • It is reported that mechanical stimulation takes a role in improving cell growth in skeletal system. And various research groups have showed that developed bioreactor to stimulate cell-seeded and threedimensional scaffold. In this study, we designed a custom-made bioreactor capable of applying controlled compression to cell-seeded agarose gel. This device consisted of a circulation system and compression system. In circular system, culture chamber was sealed for prohibiting contamination and media solution was circulated by pump. In compression system, mechanical stimuli were controlled by LabVIEW software and mechanical transfer system. Cell-encapsulated agarose gels were cultured for up to 7 days. There were significant differences between the number of cells grown in dynamic cell culture and in static cell culture from 3 days to 7 days.

  • PDF

Insulin - Like Growth Factor-I Effects on the Proliferation and Bone Matrix Protein Gene Expression of MC3T3-E1 Cell (MC3T3-E1 세포증식 및 골기질 단백질 발현에 대한 인슐린유사성장인자-I의 효과)

  • Lee, Dong-Sik;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.389-405
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of IGF-I for DNA synthetic activity and the mRNA expression of bone matrix protein, type I collagen and osteopontin in prolifetation and differentiation of MC3T3-E1 cells. To evaluate DNA synthetic activity, cells were seeded at $2{\times}10^4cells/ml$ in 24 well plates and to evaluate mRNA of type I collagen and osteopontin cells were seeded at $5{\times}10^5cells/ml$ in 100mm culture dishes. These cells were cultured in alpha-minimum essential medium(${\alpha}-MEM$) containing 10% fetal bovine serum at $37^{\circ}C$, 5% $CO_2$ incubator. For DNA synthetic activity test 1, 10, 100ng/ml IGF-I were added to the cells which had been cultured for 3 days before 24 hours. For type I collagen mRNA expression 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 10 days and for osteopontin mRNA expression 0.1, 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 15, 20 days. Cell proliferaton was measured by the incorporation of [$^3H$]-thymidine into DNA and expression for type I collagen and osteopontin were measured by northern blot analysis. The results were as follows : DNA synthetic activity were generally higher in experimental group than control group. Expressions of type I collagen mRNA were higher at 5 day group and much lower at 10 day group in the control groups. In the experimental groups, mRNA expressions were slightly increased when 1 ng/ml IGF-I were added to 5 day group and decreased in all experimental 10 day groups. Expressions of osteopontin mRNA were higher at 20 day groups and lower at 15 day groups than the control groups. In the experimental groups, mRNA expressions were incereased when 0.1, 1 ng/ml IGF-I were added to 5 day group and in all the 15 day groups, but decreased when 0.1, 1, 10 ng/ml IGF-I were added to 20 day groups. IGF-I stimulated DNA synthetic activity of MC3T3-E1 cells during proliferation stage significantly, did not greatly changed effects on type I collagen mRNA expression and stimulated osteopontin mRNA expression at 15 day especially. In conclusion, we suggests that IGF-I have a tendency of stimulation effect of DNA synthetic activity but do not stimulate type I collagen mRNA in proliferation stage of MC3T3-E1 cell cultures, and stimulate osteopontin mRNA in differentiation stage of MC3T3-E1 cell cultures.

  • PDF

Effect of Safflower and Safflower Seed Extract on Osteogenic Differentiation of MC3T3E1 Cells (홍화, 홍화씨 추출물이 MC3T3E1 세포의 골분화 과정에 미치는 영향)

  • Yu, Sung-ryul;Shin, Seon-mi
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.518-526
    • /
    • 2015
  • Objectives This study investigated the effect of purified safflower (Carthamus tinctorius Linne) and safflower seed (Carthamus tinctorius L. seed; CS) extract, using hot water and ethanol extract methods , on the osteogenic differentiation of MC3T3E1 cells.Methods The safflower and safflower seed were extracted with hot water and ethanol. The samples were concentrated by a rotary evaporator and then freeze-dried using a freeze-dryer. The MC3T3E1 cells were propagated and maintained in DMEM (Gibco) containing 10% FBS and a 1% antibiotic antimycotic solution. To induce osteogenic differentiation, the cells were treated for 14 days with DMEM with 10 mM β-glycerophosphate and 50 μM ascorbic acid. Extract doses were confirmed by the results of an MTT assay, and treatment of the extracts was performed in a differentiation medium every two days. The ALP staining and activity were tested after osteogenic differentiation for five days, and after 14 days, osteogenic differentiation was determined by alizarin red S staining. The mRNA expressions of osteogenic-related genes were quantified using quantitative real-time PCR.Results In the results of the MTT assay, all concentrations of safflower extracts had no toxicity in the MC3T3El cells. But in the groups of 100 ng/ml and 200 ng/ml concentrations of safflower seed extracts, the cell viability was significantly reduced by up to 40-50%. So we fixed the treatment concentration of the extract at 50 ng/ml. In the ALP and alizarin red S staining, all extract groups increased osteogenic differentiation compared with the control group. The water-safflower extract group showed the highest mRNA level of Alp, Runx2, and Dlx5 genes. The mRNA level of Ocn, an osteogenic gene related to late-stage differentiation, in the ethanol-safflower extract group increased the mineralization more significantly than in other groups.Conclusions These data suggest that the extract of safflower increases the osteoblastic differentiation activates of MC3T3E1 cells like the extract of safflower seed. The water-extract and ethanol-extract of safflower have effects on different stages of osteogenesis in MC3T3El. Not only safflower seed but also safflower will be useful therapeutic reagents for age-associated chronic diseases such as osteoporosis.

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Effects of Rubus coreanus Miquel Extracts on the Activity and Differentiation of MC3T3-E1 Osteoblastic Cell (복분자(Rubus coreanus Miquel) 추출물이 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Lee Ji-Won;Lee In-Seon
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.967-974
    • /
    • 2004
  • The osteoblastic cell activity is important for born formation, thus, this study was performed to investigation of that the effect of edible sources, Rubus coreanus Miquel (RCM), on the proliferation and differentiation of MC3T3-E1 osteoblastic like cell. The effects of RCM extract on cell proliferation were measured by MIT assay. At 1, $10\;{\mu}g/mL$ of RCM extract treated, that were elevated of cell proliferation to 103 and $142\%$ via control, respectively. And the cell differentiation were measured as alkaline phosphatase (ALP) activity at 3, 9, 18, and 27 days. As the results, the $10\;{\mu}g/mL$ was increased ALP activity more than 2.6 times compared with control, 1.4 times via positive control at 27th day (p<0.05). The optical concentration of RC extract was rechecked by ALP staining and Alizarin Red staining for investigation of the induction of ALP activity, nodule formation by mineralization. mRNA expression analysis showed that the RCM $(10\;{\mu}g/mL)$ increased in SOX9 as well as ALP in MC3T3-E1 cells. These results suggest that RC extract was stimulates the MC3T3-E1 cell proliferation and differentiation.