• Title/Summary/Keyword: MC3T3

Search Result 485, Processing Time 0.022 seconds

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Effects of Chrysanthemum indicum L. Extract on the Growth and Differentiation of Osteoblastic MC3T3-E1 Cells (감국(Chrysanthemum indicum L.) 추출물이 MC3T3-E1 조골세포의 증식 및 분화에 미치는 영향)

  • Yun, Jee-Hye;Hwang, Eun-Sun;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1384-1390
    • /
    • 2011
  • Chrysanthemum indicum L. (Asteraceae) is a common traditional herbal medicine used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic function against inflammatory cytokines. In this study, the effects of Chrysanthemum indicum L. extract (CIE) on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were investigated. CIE (100 ${\mu}g/mL$) significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, and the deposition of collagen and calcium in the cells (p<0.05). The effect of CIE in increasing cell growth, ALP activity, and collagen content was completely prevented by the presence of 1 ${\mu}M$ tamoxifen, suggesting that CIE's effect might be partly involved in estrogen-related activities. These results indicate that the enhancement of osteoblast functionality by CIE may prevent osteoporosis and inflammatory bone diseases.

Effects of ENA-A(ENA actimineral resource A) Ion Water on the Activity and Differentiation of MC3T3-E1 Osteoblastic cell (ENA-A(ENA actimineral resource A) 이온수가 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Lee, Ji-Won;Jeon, Sang-Kyung;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.925-931
    • /
    • 2006
  • Culture of osteoblast is extremely valuable in analyzing biological features that are specific to bone. ENA-A, ENA actimineral resource A, is a seaweed origin alkaline water. To investigate the bioactivity of ENA which act on bone metabolism, we studied the effects of a ENA on the activity of osteoblast MC3T3-E1 cells. ENA (1, 2, 4%) dose-dependently increased survival (p<0.05) and alkaline phosphatase activity (p<0.05) on MC3T3-E1 cell. And examined histochemistry and nodule formation according to the time course. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation by using RT-PCR. This study suggest that ENA may promote the function of osteoblastic cells and play an important role in bone formation.

Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model

  • Takanche, Jyoti Shrestha;Kim, Ji-Eun;Jang, Sungil;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • Purpose: The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. Results: MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.

A Check List and Key to the Tetranychod Mites (Acari: Chelicerata) of Korea (한국산 잎응애 상과의 목록 및 검색표)

  • 이원구;이정상
    • Animal Systematics, Evolution and Diversity
    • /
    • no.nspc3
    • /
    • pp.45-58
    • /
    • 1992
  • Tetranychoid mites found from Korea until now are 42 species belonging to 12 genera, 2 families as follows: 1 Bryobia japonica Ehara et Yamada, 2. B. praetiosa Koch, 3. B. rubrioculus(Scheuten), 4. Petrobia latens(Muller), 5. Aponychus corpuzae Rimando, 6. A firmianae(Ma et Yuan). 7. Panonychus citri(McGregor), 8. P. ulmi(Koch), 9. Eotetranychus carpini Oudemans, 10. E. hicoriae(McGregor), 11. E. populi(Koch), 12. E. rubiphilus (Reck), 13. E. sexmaculatus (Riley), 14. E. smithi Pritchard et Baker, 15. E. tiliarium (Hermann), 16. E. uchidai Ehara, 17. Schizotetranychus bambusae Reck, 18. S. celarius(Banks), 19. S. leguminosus Ehara, 20. Oligonychus aceris(Shimer), 21. O. clavatus(Ehara), 22. O. hondoensis(Ehara), 23. O. ilicis(McGregor), 24. O. karamatus(Ehara), 25. O. orthius Rimando, 26. O. peridtus Pritchard et Baker, 27. O. shinkajii Ehara, 28. O. pustulosus (Ehara), 29. O. ununguis(Jacobi), 30. O. sp. 31. Tetranychus kanzawai Kishida, 32. T. phaselus Ehara, 33. T. truncatus Ehara, 34. T. urticae Koch, 35. T. vienensis Zacher, 36. Aegyptobia nothus Pritchard et Baker, 37. Pentamerismus taxi (Haller), 38. P. oregonensis McGregor, 39. Brevipalpus californicus(Banks), 40. B. lewisi McGregor, 41. B. obovatus Donnadieu, 42. Tenuipalpus zhizhilashviliae Reck. On the above species, a taxanomic key was made and ecological data including distribution and host plant are presented in this paper.

  • PDF

Effects of irradiation on the mRNA expression of the osteocalcin and osteopontin in MC3T3-E1 osteoblastic cell line (MC3T3-E1 조골세포주의 osteocalcin과 osteopontin mRNA 발현에 미치는 방사선의 영향)

  • Cho Su-Beom;Lee Sang-Rae;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.179-185
    • /
    • 2003
  • Purpose: To investigate the effects of irradiation on the phenotypic expression of the MC3T3-El osteoblastic cell line, particularly on the expression of osteocalcin and osteopontin. Materials and Methods: Cells were irradiated with a single dose of 0.5, 1,4, and 8 Gy at a dose rate of 5.38 Gy/min using a cesium 137 irradiator. After the specimens were harvested, RNA was extracted on the 3rd, 7th, 14th, and 21st day after irradiation. The RNA strands were reverse-transcribed and the resulting cDNAs were subjected to amplification by PCR. Results: The irradiated cells demonstrated a dose-dependent increase in osteocalcin and a dose-dependent decrease in osteopontin mRNA expression compared with the non-irradiated control group, The amount of osteocalcin mRNA expression decreased significantly at the 3rd day after irradiation of 0,5, 1,4, and 8 Gy, and also decreased significantly at the 3rd, 14th, and 21 st day after irradiation in the 8 Gy exposed group compared with the control group, The degree of osteopontin mRNA expression increased significantly at the 7th day after irradiation of 0,5, 1,4, and 8Gy, Conclusion: These results showed that each single dose of 0,5, 1, 4, and 8 Gy influenced the mRNA expression of osteocalcin and osteopontin associated with the calcification stage of osteoblastic cells, suggesting that each single dose affected bone formation at the cell level.

  • PDF

Zinc modulation of osterix in MC3T3-E1 cells

  • Seo, Hyun-Ju;Jeong, Jin Boo;Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.53 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • Purpose: Zinc is known to be associated with osteoblast proliferation and differentiation. Osterix as zinc-finger transcription factor is also related to osteoblast differentiation and bone formation. In the present study, we aimed to investigate whether zinc modulates osterix gene and protein expression in osteoblastic MC3T3-E1 cells. Methods: MC3T3-E1 cells were cultured in zinc-dependent concentrations (0, 0.5, 1, 5, or 15 µM Zn), along with osteogenic control (normal osteogenic medium) for 1 and 3 days. The gene and protein expression levels of osterix were analyzed by real-time reverse transcription polymerase chain reaction and Western blotting, respectively. Results: Zinc increased osteoblast proliferation in a concentration-dependent manner at day 1 and 3. Similarly, zinc increased the activity of osteoblast marker enzyme alkaline phosphatase in cells and media in a zinc concentration-dependent manner. Moreover, our results showed that the pattern of osterix gene expression by zinc was down-regulated within the low levels of zinc treatments (0.5-1 µM) at day 1, but it was up-regulated after extended culture period at day 3. Osterix protein expression by zinc showed the similar pattern of gene expression, which down-regulated by low zinc levels at day 1 and up-regulated back at day 3 as the early stage of osteoblast differentiation. Conclusion: Our results suggest that zinc modulates osterix gene and protein expression in osteoblasts, particularly in low level of zinc at early stage of osteoblast differentiation period.

THE EFFECT OF SODIUM FLUORIDE AND SODIUM ORTHOVANADATE ON OSTEOBLASTIC CELL LINE MC3T3-E1 CELLS (Sodium fluoride와 Sodium orthovanadate가 조골세포주 MC3T3-E1에 미치는 영향에 관한 연구)

  • Kim, Won-Jin;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.97-111
    • /
    • 1991
  • It is the aim of this study to investigate the effects of sodium fluoride and sodium orthovanadate upon the proliferation and activity of the osteoblast (MC3T3-E1 cells). MC3T3-E1 cells were cultured in $\alpha-MEM$ containing $10\%$ FBS and various concentration of sodium fluoride and sodium orthovanadate was appended to serum free media. DNA synthesis was examined through the $[^3H]$ thymidine incorporation into DNA. Collagen synthesis was examined through the $[^3H]$ proline incorporation into collagenase digestible protein and noncollagen protein. The following results were drawn; 1. Sodium fluoride stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M$ to $10{\mu}M$ (P < 0.005). 2. Sodium orthovanadate stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M\;to\;8{\mu}M$, however showed diminution at $10{\mu}M$ (P < 0.001). 3. Sodium fluoride and sodium orthovanadate stimulated the percent collagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M$ to $10{\mu}M$ (P < 0.001). 4. Sodium fluoride and sodium orthovanadate stimulated the noncollagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M\;to\;10{\mu}M$ (P < 0.001). In conclusion, sodium fluoride and sodium orthovanadate stimulate the proliferation and activity of osteoblast by stimulation of DNA synthesis and collagen and noncollagen synthesis in osteoblast.

  • PDF