DOI QR코드

DOI QR Code

Effects of Chrysanthemum indicum L. Extract on the Growth and Differentiation of Osteoblastic MC3T3-E1 Cells

감국(Chrysanthemum indicum L.) 추출물이 MC3T3-E1 조골세포의 증식 및 분화에 미치는 영향

  • Yun, Jee-Hye (Dept. of Food and Nutrition, Duksung Women's University) ;
  • Hwang, Eun-Sun (Dept. of Nutrition and Culinary Science, Hankyong National University) ;
  • Kim, Gun-Hee (Dept. of Food and Nutrition, Duksung Women's University)
  • 윤지혜 (덕성여자대학교 식품영양학과) ;
  • 황은선 (한경대학교 영양조리과학과) ;
  • 김건희 (덕성여자대학교 식품영양학과)
  • Received : 2011.07.26
  • Accepted : 2011.08.28
  • Published : 2011.10.31

Abstract

Chrysanthemum indicum L. (Asteraceae) is a common traditional herbal medicine used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic function against inflammatory cytokines. In this study, the effects of Chrysanthemum indicum L. extract (CIE) on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were investigated. CIE (100 ${\mu}g/mL$) significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, and the deposition of collagen and calcium in the cells (p<0.05). The effect of CIE in increasing cell growth, ALP activity, and collagen content was completely prevented by the presence of 1 ${\mu}M$ tamoxifen, suggesting that CIE's effect might be partly involved in estrogen-related activities. These results indicate that the enhancement of osteoblast functionality by CIE may prevent osteoporosis and inflammatory bone diseases.

본 연구에서는 감국 에탄올 추출물이 조골세포의 증식 및 분화에 미치는 영향을 분석하여 골다공증 관련 식물성 에스트로젠으로써의 이용 가능성을 확인하고자 하였다. 감국 에탄올 추출물은 30~100 ${\mu}g/mL$ 농도 범위에서 조골세포의 증식을 유의적으로 증가시켰으며, 100 ${\mu}g/mL$ 농도에서 대조군 대비 최대 122% 세포성장을 나타내었다. 이러한 세포증식 유도는 estrogen antagonist인 tamoxifen 처리 시 상쇄되어 estrogen 유사효과에 의한 것으로 사료되었다. MC3T3-E1 세포의 분화에 미치는 영향을 살펴보고자 대표적 분화지표인 ALP 효소활성, collagen 함량, mineralization 수준을 측정한 결과, 10, 30 ${\mu}g/mL$ 농도에서 ALP 활성의 유의적 증가와 200 ${\mu}g/mL$ 농도에서 collagen 함량과 mineralization의 유의적인 증가를 확인하였으며, ALP 활성, collagen 함량 모두 tamoxifen 처리에 의해 증가 효과가 상쇄되어 estrogen 유사작용에 의한 것으로 사료된다.

Keywords

References

  1. Stuart IF. 2008. Bone deposition and resorption. In Human Physiology. 9th ed. McGraw-Hill Inc., New York, NY, USA. p 652-657.
  2. Parfitt AM. 1994. Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55: 273-286. https://doi.org/10.1002/jcb.240550303
  3. Mone Z. 2007. Skeletal remodeling in health and disease. Nat Med 13: 791-801. https://doi.org/10.1038/nm1593
  4. Park JS. 2000. Physiological effect of isoflavone (II): osteoporosis and postmenopausal symptom. Natl Nutr 215: 25-31.
  5. Rogers J. 1967. Estrogens in the menopause and postmenopause. N Eng J Med 280: 364-367.
  6. Vidal O, Kindblom LG, Ohlsson C. 1999. Expression and localization of estrogen receptor-$\beta$ in murine and human bone. J Bone Miner Res 14: 923-929. https://doi.org/10.1359/jbmr.1999.14.6.923
  7. Edward MW, Bain SD, Bailey MC, Lantry MM, Howard GA. 1992. 17$\beta$-estradiol stimulation of endosteal bone formation in the ovariectomized mouse: an animal model for evaluation of bone targeted estrogens. Bone 13: 29-34. https://doi.org/10.1016/8756-3282(92)90358-4
  8. Ernst M, Heath JK, Rodan GA. 1989. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormonestimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125: 825-833. https://doi.org/10.1210/endo-125-2-825
  9. Tomkinson A, Reeve J, Shaw RW, Noble BS. 1997. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82: 3128-3135. https://doi.org/10.1210/jc.82.9.3128
  10. McCarthy TL, Centrella M. 1993. Regulation of IGF activity in bone. Adv Exp Med Biol 343: 407-414. https://doi.org/10.1007/978-1-4615-2988-0_38
  11. Genant HK, Baylink DJ, Gallagher JC. 1989. Estrogens in the prevention of osteoporosis in postmenopausal women. Am J Obstet Gynecol 161: 1842-1846. https://doi.org/10.1016/S0002-9378(89)80004-3
  12. Anderson JJ, Anthony MS, Cline JM, Washburn SA, Garner SC. 1999. Health potential of soy isoflavones for menopausal women. Public Health Nut 2: 489-504.
  13. Arjmandi BH, Alekel L, Hollis BW, Amin D, Stacewicz- Sapuntzakis M, Guo P, Kukreja SC. 1996. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr 126: 161-167.
  14. Gehm BD, McAndrews JM, Chien PY, Jameson JL. 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94: 14138-14143. https://doi.org/10.1073/pnas.94.25.14138
  15. Han SM. 2005. Studies on the functional components and cooking aptitude for medicinal tea of Chrysanthemum indicum L. PhD Dissertation. Sejong University, Seoul, Korea.
  16. Shunying Z, Yang Y, Huaidong Y, Yue Y, Guolin Z. 2005. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol 96: 151-158. https://doi.org/10.1016/j.jep.2004.08.031
  17. Cheon MS, Yoon TS, Lee DY, Choi GY, Moon BC, Lee AY, Choo BK, Kim HK. 2009. Chrysanthemum indicum Linne extract inhibits the inflammatory response by suppressing NF-${\kappa}B$ and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 122: 473-477. https://doi.org/10.1016/j.jep.2009.01.034
  18. Cheng W, Li J, You T, Hu C. 2005. Anti-inflammatory and immuno-modulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linne. J Ethnopharmacol 101: 334-337. https://doi.org/10.1016/j.jep.2005.04.035
  19. Ryu SY, Choi SU, Lee SH, Ahn JW, Zee OP. 1994. Antitumor activity of some phenolic components in plants. Arch Pharm Res 17: 42-44. https://doi.org/10.1007/BF02978247
  20. Heinrich PC, Behrmann I, Newen GM, Schaper F, Graeve L. 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334: 297-314.
  21. Husain SR, Cillard J, Cillard P. 1987. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26: 2489-2492. https://doi.org/10.1016/S0031-9422(00)83860-1
  22. Green LM, Reade JL, Ware CF. 1984. Rapid colorimetric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lympokines. J Immunol Meth 70: 257-268. https://doi.org/10.1016/0022-1759(84)90190-X
  23. Tullberg-Reinert H, Jundt G. 1999. In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112: 271-276. https://doi.org/10.1007/s004180050447
  24. Damien E, Price JS, Lanyon LF, 1998. The estrogen receptor's involvement in osteoblasts adaptive response to mechanical strain. J Bone Miner Res 13: 1275-1282. https://doi.org/10.1359/jbmr.1998.13.8.1275
  25. Ishibashi O, Yamagishi T, Hanada K, Kawashima H. 2001. Tamoxifen agonism and estrogen antagonism of c-fos gene promoter activity through non-consensus-responsive elements in MC3T3-E1 osteoblasts. Biochem Biophy Res Comm 289: 705-711. https://doi.org/10.1006/bbrc.2001.6045
  26. Choi EM. 2007. Modulatory effects of luteolin on osteoblastic function and inflammatory mediators in osteoblastic MC3T3-E1 cells. Cell Biology International 31: 870-877. https://doi.org/10.1016/j.cellbi.2007.01.038
  27. Choi EM. 2007. Apigenin increases osteoblastic differentiation and inhibits tumor necrosis factor-$\alpha$-induced production of interleukin-6 and nitric oxide in osteoblastic MC3T3-E1 cells. Pharmazie 62: 216-220.
  28. Lee HJ. 2005. Effect of Rosa laevigata Michx. methanol extracts on the bone metabolism in ovariectomized rat. MS Thesis. Keimyung University, Daegu, Korea.
  29. Lee JW, Lee IS. 2004. Effects of Rubus coreanus Miquel extracts on the activity and differentiation of MC3T3-E1 osteoblastic cell. J Life Sci 14: 967-974. https://doi.org/10.5352/JLS.2004.14.6.967
  30. Choi EM. 2001. Effect of soybean ethanol extract on the function of osteoblastic MC3T3-E1 cells. PhD Dissertation. University of Kyunghee, Seoul, Korea.
  31. Wlodarski KH, Reddish AH. 1986. Alkaline phosphatase as a marker of osteoinductive cells. Calcif Tissue Int 39: 382-385. https://doi.org/10.1007/BF02555175
  32. Harrison G, Shapiro IM, Golub EE. 1995. The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralizaton initiation in vitro. J Bone Miner Res 10: 568-573.
  33. Stein GS, Lian JB, Wijnen AJ, Montechino M. 1996. Transcriptional control of osteoblast growth and differentiation. Physiol Rew 76: 593-629.
  34. Torii Y, Hitomi K, Yamagishi Y, Tsukagoshi N. 1996. Demonstration of alkaline phosphatase participation in the mineralization of osteoblasts by antisense RNA approach. Cell Biol Int 20: 459-464. https://doi.org/10.1006/cbir.1996.0060
  35. Weiss MJ, Ray K, Fallon MD, Whyte MP, Fedde KN, Lafferty MA. 1989. Analysis of liver/bone/kidney phosphatase mRNA, DNA and enzymatic activity in cultured skin fibroblasts from 14 unrelated patients with severe hypophosphatasia. Am J Hum Genet 44: 686-694.
  36. Fukayama S, Tashjian AH. 1999. Stimulation by parathyroid hormone of $^{45}Ca^{2+}$ uptake in osteoblast-like cells: possible involvement of alkaline phosphatase. Endocrinology 126: 1941-1949.
  37. Lubec O, Labudova O. 1992. Alpha-methyl-proline restores normal levels of bone collagen type I synthesis in ovariectomized rats. Life Sci 57: 2245-2253.
  38. Tiku ML, Allison GT. 2003. Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteo Arthritis Res Soc Int 11: 159-166.
  39. Kim MH, Otsuka M, Arakawa N. 1994. Age-related changes in the pyridinoline content of guinea pigs cartilage and achilles tendon collage. J Nutr Sci Vitaminol 40: 95-103. https://doi.org/10.3177/jnsv.40.95
  40. Clark AP, Schutting JA. 1992. Targeted estrogen/progesteron replacement therapy for osteoporosis: calculation of health care cost savings. Osteoporosis Int 2: 195-200. https://doi.org/10.1007/BF01623926
  41. Choi KH. 2006. The effects of mulberry fruits on the biological activity in ovariectomized rats. MS Thesis. University of Silla, Busan, Korea.
  42. Maeda T, Matsunuma A, Kawane T, Horiuchi N. 2001. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophy Res Comm 280: 874-877. https://doi.org/10.1006/bbrc.2000.4232
  43. Schiller PC, D'ippolito G, Balkan W, Roos BA, Howard GA. 2001. Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 28: 362-369. https://doi.org/10.1016/S8756-3282(00)00458-0
  44. Park JH, Lee JW, Kim HJ, Lee IS. 2005. Effects of Solidago virga-aurea var. gigantea Miq. root extracts on the activity and differentiation of MC3T3-E1 osteoblastic cell. J Korean Soc Food Sci Nutr 34: 929-936. https://doi.org/10.3746/jkfn.2005.34.7.929

Cited by

  1. Effects of Poly-Gamma Glutamate Contents Cheonggukjang on Osteoblast Differentiation vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.664
  2. Flavored Oil Components in the Leaves of Chrysanthemum zawadskii vol.27, pp.6, 2011, https://doi.org/10.17495/easdl.2017.12.27.6.676
  3. 한약재 추출물의 에스트로겐 유사활성 및 조골세포 증식과 분화에 미치는 영향 vol.27, pp.4, 2017, https://doi.org/10.5352/jls.2017.27.4.456
  4. 골 대사 및 phytochemicals의 estrogen 효과 vol.28, pp.7, 2011, https://doi.org/10.5352/jls.2018.28.7.874
  5. 홍국색소의 항산화 활성 및 조골세포 분화에 미치는 영향 vol.30, pp.5, 2020, https://doi.org/10.5352/jls.2020.30.5.468
  6. Chrysophanol increases osteoblast differentiation via AMPK/Smad1/5/9 phosphorylation in vitro and in vivo vol.48, pp.4, 2011, https://doi.org/10.1111/1440-1681.13443