• Title/Summary/Keyword: MAXIMUM STRENGTH

Search Result 3,770, Processing Time 0.035 seconds

Strength and Endurance of the Deep Neck Flexors of Industrial Workers With and Without Neck Pain (경부 통증 유무에 따른 심부 경부 굴곡근의 근력과 지구력 비교)

  • Kim, Jae-Cheol;Yi, Chung-Hwi;Kwon, Oh-Yun;Oh, Duck-Won;Jeon, Hye-Seon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • The purpose of this study was to investigate the strength and endurance of the deep neck flexor muscles in individuals with work-related neck pain. Subjects consisted of two groups: twenty industrial workers with neck pain and twenty age-matched healthy subjects. To evaluate the strength and endurance of deep cervical flexors, maximum voluntary contractile strength (MVCS) and a sustained time at sub-maximal voluntary contractile strength (SMVCS) (80% and 50% of MVCS) were measured using a pressure biofeedback unit and a stop watch in supine. The MVCS of deep neck flexor muscles was 29.67${\pm}$4.56 in neck pain group and 54.27${\pm}$6.78㎜Hg in normal group. The sustained time at 80% SMVCS was 12.42${\pm}$2.64 seconds and 55.12${\pm}$12.76 seconds in the groups with and without neck pain. The sustained time at 50% SMVCS was 25.40±5.88 seconds and 109.70${\pm}$31.50 seconds in the groups with and without neck pain. The difference of the lower jaw position was 16.75${\pm}$3.57㎜ and 23.03${\pm}$2.51㎜. The MVCS, endurance at the two sub-maximal levels and the difference of the lower jaw position were significantly greater in the group without neck pain than with neck pain (p$<$0.05). The findings indicate that the maximal strength and endurance of the deep neck flexors were decreased in the workers with neck pain compared to those without neck pain. Therefore, it is necessary to include strengthening and endurance exercises of the deep neck flexor muscles in therapeutic program of work-related musculoskeletal disorders involving neck pain.

Biomechanical analysis of pullout strength of the pedicle screws in relation to change bone mineral density (반복 하중 후 골밀도 감소에 따른 척추경 나사못의 고정력(Pullout Strength)감소 형태 분석)

  • Jung, D.Y.;Lee, S.J.;Kim, D.S.;Shin, J.W.;Kim, W.J.;Suk, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.155-156
    • /
    • 1998
  • Screw loosening and subsequent pullout can be attributed to the reduction in bone mineral density in the vertebrae manifested by osteoporosis in which the decrease in fixation strength between the cancellous bone and screw threads are accelerated by repeated loads exerted by patients own weight and activities following the surgery. In this study, the change in pullout strength of the pedicle screws was investigated before and after repeated loads were imparted. For this purpose. Diapason pedicle screws $(6.7\times40mm)$ were inserted onto fresh porcine spine specimens (T1-L5) after bone mineral density was measured using a DEXA. With an MTS, an axial load was applied at a loading rate of 0.33mm/sec until failure to measure the maximum pullout strength. Flexion moment of 7.5N-m was then imparted at 0.5Hz for 2000 cycles. It was found that the maximum pullout strength was exponentially related to BMD regardless of load types ($107.71\;\times\;\exp^{(1.43{\times}BMD)}r^2=0.93$, P<0.0001 without repeated load; ($107.71\;\times\;\exp^{(2.19{\times}BMD)}r^2=0.78$, P<0.0001 with repeated load). The results suggest that the reduction in pullout strength for pedicle screws is far more prominent in osteoporotic spine than in normal spine especially as number of repeated load was increased. More importantly, it was demonstrated that the level of bone mineral density and the activity level of the patient should be evaluated in more detail for successful implementation of pedicle screw systems in spinal surgery.

  • PDF

Axial Compressive Strength of Rectangular Hollow Section Members (각형 강관의 축방향 압축강도에 관한 연구)

  • Jo, Jae Byung;Lim, Jeong Soon;Han, Choong Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.153-160
    • /
    • 1998
  • The sectional dimensions and initial crookedness of the RHS(rectangular hollow section, ${\boxe}-75{\times}75{\times}3.2,\;{\boxe}-100{\times}100{\times}4.2,\;{\boxe}-125{\times}125{\times}6.0$) were measured. The axial compressive strength tests for columns with slenderness $46{\sim}84$ were performed as well as stub tests and tensile tests. FEM analysis was also used. The measurement shows that the errors of sectional dimensions are negligible. For the column length corresponding to ${\lambda}=100$, the initial crookedness with the 2.5% probability estimated from the measured results is 1/490, 1/1121 1/1395 for each section respectively. The yield strengths obtained from tensile test are higher than the specified minimum value by more than 30%. The column test shows that the maximum axial resistances are almost same as, or a little higher than the FEM results and the specified strength curves of AISC Specification and Eurocode, when the maximum strengths from the stub tests are used as the yield strength of the steel. But the test results show much higher column strength than those specified in the Standard and Code, when the specified minimum yield strength of the steel is used.

  • PDF

A Study on the Weld Performance of High Strength Steel considering the Fabrication (제작을 고려한 고강도강재의 용접성능에 관한 연구)

  • Kyung, Kab Soo;Hong, Sung Wook;Park, Yong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.647-656
    • /
    • 2002
  • High-strength steel in steel bridges is the key to achieving cost-efficiency because it facilitates lightweight construction and rationalizes structure. The future of high-strength steel is bright, with its use projected to expand. As such, it is necessary to evaluate precisely various factors affecting the process of fabricating high-strength steel, i.e., welding heat, strain hardening, and weldability and performance of the welded joints. This study therefore performed the maximum hardness test and y-groove weld crack test using welding processes such as SAW, FCAW, and GMAW, in order to investigate the welding performance and characteristics of welded Joints or high-strength steel produced in Korea such as SM570, POSTEN60, and POSTEN80. In addition, a series of welding tests was carried out to estimate the tensile strength, bending characteristics, absorbed energy, and hardness in welded joints.

THE EFFECT OF PROCESSING METHOD AND SURFACE DESIGN ON THE TRANSVERSE STRENGTH OF REPAIRED DENTURE BASE RESIN (온성방법과 단면형태가 수종의 의치상 수리레진의 결합강도에 미치는 영향)

  • Kim, Kang-Nam;Bae, Tae-Sung;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.665-674
    • /
    • 1996
  • This study was designed to evaluate the effect of processing method and surface design on the transverse strength of repaired denture base resin. Three heat-cured denture base resins(Vertex, Lucitone, Lang), one cold-cured resin(Lang), and one light-cured resin(Dentacolor gingiva material) were used for repair purpose. The specimens for 3-point flexure test were fabricated by five processing methods such as self-curing, pressure pot, boiling water, processing, and light curing. Finally to evaluate the effect of surface designs for repaired resin, three surface designs(butt, bevel, inverse bevel) were tested. Within the limit of this study, following conclusions were drawn. 1. Lucitone denture base material showed highest flexural strength of $131.37{\pm}2.15MPa$, and there were significant differences in stength between Lucitone and other resins. 2. Between two different self curing methods, self curing repair resin, Lang, cured by pressure pot method showed highest flexural strength, $58.49{\pm}4.89MPa$. 3. Among the heat cured repair resins, maximum transverse strength value of $88.69{\pm}16.60MPa$ was recorded in Lucitone group cured by processing method. 4. Inverse bevel joint design showed significantly higher bond strength than butt joint group, Maximum bond strength was $59.36{\pm}1.33MPa$ in inverse bevel joint design group.

  • PDF

Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods

  • Sahin, Onur;Ozdemir, Ali Kemal;Turgut, Mehmet;Boztug, Ali;Sumer, Zeynep
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.98-107
    • /
    • 2015
  • PURPOSE. The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS. 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS. Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION. Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure.

Wheelchair martial arts practitioners have similar bone strength, sitting balance and self-esteem to healthy individuals

  • Fong, Shirley S.M.;Ng, Shamay S.M.;Li, Anthony O.T.;Guo, X.
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Objective: The aim of this study was to compare the radial bone strength, sitting balance ability and global self-esteem of wheelchair martial arts practitioners and healthy control participants. Design: Cross-sectional study. Methods: Nine wheelchair martial art practitioners with physical disabilities and 28 able-bodied healthy individuals participated in the study. The bone strength of the distal radius was assessed using the Sunlight Mini-Omni Ultrasound Bone Sonometer; sitting balance was quantified using the modified functional reach test (with reference to a scale marked on the wall); and the self-administered Rosenberg self-esteem (RSE) scale was used to measure the global self-esteem of the participants. The velocity of the ultrasound wave (speed of sound, m/s) traveling through the outer surface of the radial bone was measured and was then converted into a T-score and a Z-score. These ultrasound T-score and Z-score that represent bone strength; the maximum forward reaching distance in sitting (cm) that represents sitting balance; and the RSE total self-esteem score that indicates global self-esteem were used for analysis. Results: The results revealed that there were no statistically significant between-group differences for radial bone-strength, maximum forward reaching distance, or self-esteem outcomes. Conclusions: The wheelchair martial arts practitioners had similar radial bone strength, sitting balance performance and self-esteem to able-bodied healthy persons. Our results imply that wheelchair martial arts might improve bone strength, postural control and self-esteem in adult wheelchair users. This new sport-wheelchair martial arts-might be an exercise option for people with physical disabilities.

Measurement of Uncertainty Using Standardized Protocol of Hand Grip Strength Measurement in Patients with Sarcopenia

  • Ha, Yong-Chan;Yoo, Jun-Il;Park, Young-Jin;Lee, Chang Han;Park, Ki-Soo
    • Journal of Bone Metabolism
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2018
  • Background: The aim of this study was to determine the accuracy and error range of hand grip strength measurement using various methods. Methods: Methods used for measurement of hand grip strength in 34 epidemiologic studies on sarcopenia were analyzed. Maximum grip strength was measured in a sitting position with the elbow flexed at 90 degrees, the shoulder in 0 degrees flexion, and the wrist in neutral position (0 degrees). Maximum grip strength in standing position was measured with the shoulder in 180 degrees flexion, the elbow fully extended, and the wrist in neutral position (0 degrees). Three measurements were taken on each side at 30 sec intervals. The uncertainty of measurement was calculated. Results: The combined uncertainty in sitting position on the right and left sides was 1.14% and 0.38%, respectively, and the combined uncertainty in standing position on the right and left sides was 0.35 and 1.20, respectively. The expanded uncertainty in sitting position on the right and left sides was 2.28 and 0.79, respectively, and the expanded uncertainty in standing position on the right and left sides was 0.71 and 2.41, respectively (k=2). Conclusions: Uncertainty of hand grip strength measurement was identified in this study, and a significant difference was observed between measurement. For more precise diagnosis of sarcopenia, dynamometers need to be corrected to overcome uncertainty.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.