• Title/Summary/Keyword: MAXBAND Model

Search Result 2, Processing Time 0.017 seconds

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

Signal Optimization Model Considering Traffic Flows in General Traffic Networks (일반적인 네트워크에서의 신호최적화모형 개발 연구)

  • 신언교;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Most existing progression bandwidth models maximize the single or multi weighted sum of bandwidths in the both directions to improve traffic mobility on an arterial, but they cannot be applied to general networks. Even though a few models formulating a looped network problem cannot be applied to networks have not loops. Also they have some defects in optimizing phase sequences. Therefore, the objective of this study is to develope a mathematical formulation of the synchronization problem for a general traffic network. The goal is achieved successfully by introducing the signal phasing for each movement and expanding the mixed integer linear programming of MAXBAND. The experiments indicate that the proposed model can formulate the general traffic network problem mere efficiently than any other model. In conclusion, this model may optimize signal time to smooth progression in the general networks.

  • PDF