• Title/Summary/Keyword: MATLAB Simulink

검색결과 1,126건 처리시간 0.025초

Improvement of Dynamic Behavior of Shunt Active Power Filter Using Fuzzy Instantaneous Power Theory

  • Eskandarian, Nasser;Beromi, Yousef Alinejad;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1303-1313
    • /
    • 2014
  • Dynamic behavior of the harmonic detection part of an active power filter (APF) has an essential role in filter compensation performances during transient conditions. Instantaneous power (p-q) theory is extensively used to design harmonic detectors for active filters. Large overshoot of p-q theory method deteriorates filter response at a large and rapid load change. In this study the harmonic estimation of an APF during transient conditions for balanced three-phase nonlinear loads is conducted. A novel fuzzy instantaneous power (FIP) theory is proposed to improve conventional p-q theory dynamic performances during transient conditions to adapt automatically to any random and rapid nonlinear load change. Adding fuzzy rules in p-q theory improves the decomposition of the alternating current components of active and reactive power signals and develops correct reference during rapid and random current variation. Modifying p-q theory internal high-pass filter performance using fuzzy rules without any drawback is a prospect. In the simulated system using MATLAB/SIMULINK, the shunt active filter is connected to a rapidly time-varying nonlinear load. The harmonic detection parts of the shunt active filter are developed for FIP theory-based and p-q theory-based algorithms. The harmonic detector hardware is also developed using the TMS320F28335 digital signal processor and connected to a laboratory nonlinear load. The software is developed for FIP theory-based and p-q theory-based algorithms. The simulation and experimental tests results verify the ability of the new technique in harmonic detection of rapid changing nonlinear loads.

중형무인기용 하이브리드 전기동력시스템의 최적 이륙시간에 관한 연구 (A Study on Optimum Takeoff Time of the Hybrid Electric Powered Systems for a Middle Size UAV)

  • 이보화;박부민;김근배;차봉준
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.940-947
    • /
    • 2012
  • 연구대상으로 삼은 중형 전기추진 무인기는 무게 18.5 kg, 날개 길이 6.4 m급의 저속 장기체공형으로 태양전지, 연료전지, 배터리를 전력원으로 사용한다. 이륙시간에 따라 태양전지의 에너지 총량이 달라지므로 체공을 최대화하기 위한 최적의 이륙시간을 선정해야 한다. 이를 위해 전압매칭을 통해 각 전력원을 선정하여 모델링을 수행하였으며 단품 성능시험을 통해 검증 후 시뮬레이션을 수행하였다. 이륙시간이 오전 6시, 오전 2시일 때 각각 최대 37.5시간, 최소 27.6시간동안 전력공급이 가능하였다. 배터리 SOC의 사용범위를 25~80%로 제한하도록 연료전지의 작동을 제어할 경우 각각 0.31시간, 0.63시간동안 더 전력공급이 가능하며 각 전력원은 최적 운전점에서 작동함을 확인하였다.

Power Fluctuation Reduction of Pitch-Regulated MW-Class PMSG based WTG System by Controlling Kinetic Energy

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Yona, Atsushi;Senjyu, Tomonobu;Saber, Ahmed Yousuf
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.116-124
    • /
    • 2012
  • Wind is an abundant source of natural energy which can be utilized to generate power. Wind velocity does not remain constant, and as a result the output power of wind turbine generators (WTGs) fluctuates. To reduce the fluctuation, different approaches are already being proposed, such as energy storage devices, electric double layer capacitors, flywheels, and so on. These methods are effective but require a significant extra cost to installation and maintenance. This paper proposes to reduce output power fluctuation by controlling kinetic energy of a WTG system. A MW-class pitch-regulated permanent magnet synchronous generator (PMSG) is introduced to apply a power fluctuation reducing method. The major advantage of this proposed method is that, an additional energy storage system is not required to control the power fluctuation. Additionally, the proposed method can mitigate shaft stress of a WTG system. Which is reflected in an enhanced reliability of the wind turbine. Moreover, the proposed method can be changed to the maximum power point tracking (MPPT) control method by adjusting an averaging time. The proposed power smoothing control is compared with the MPPT control method and verified by using the MATLAB SIMULINK environment.

RC교각을 이용한 실시간 하이브리드 실험 시스템의 적용성 연구 (Verification of Real-time Hybrid Test System using RC Pier Model)

  • 이진행;박민석;채윤병;김철영
    • 한국지진공학회논문집
    • /
    • 제22권4호
    • /
    • pp.253-259
    • /
    • 2018
  • Structure behaviors resulting from an earthquake are experimentally simulated mainly through a shaking table test. As for large-scale structures, however, size effects over a miniature may make it difficult to assess actual behaviors properly. To address this problem, research on the hybrid simulation is being conducted actively. This method is to implement numerical analysis on framework members that affect the general behavior of the structure dominantly through an actual scale experiment and on the rest parts by applying the substructuring technique. However, existing studies on hybrid simulation focus mainly on Slow experimental methods, which are disadvantageous in that it is unable to assess behaviors close to the actual level if material properties change depending on the speed or the influence of inertial force is significant. The present study aims to establish a Real-time hybrid simulation system capable of excitation based on the actual time history and to verify its performance and applicability. The hybrid simulation system built up in this study utilizes the ATS Compensator system, CR integrator, etc. in order to make the target displacement the same with the measured displacement on the basis of MATLAB/Simulink. The target structure was a 2-span bridge and an RC pier to support it was produced as an experimental model in order for the shaking table test and Slow and Real-time hybrid simulations. Behaviors that result from the earthquake of El Centro were examined, and the results were analyzed comparatively. In comparison with the results of the shaking table test, the Real-time hybrid simulation produced more similar maximum displacement and vibration behaviors than the Slow hybrid simulation. Hence, it is thought that the Real-time hybrid simulation proposed in this study can be utilized usefully in seismic capacity assessment of structural systems such as RC pier that are highly non-linear and time-dependent.

PC 기반 회전익기/전장품 HILS 환경 개발

  • 최형식;박무혁;남기욱;안이기
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.238-247
    • /
    • 2004
  • 실시간 시뮬레이션 및 HILS(Hardware In the Loop Simulation)는 항공기 설계 및 개발에 있어서 개발기간의 단축과 비용절감 측면에서 필수적이며 컴퓨팅 기술의 발달로 그 중요성이 더욱 부각되고 있다. 복잡한 운동모델과 실시간 시뮬레이션에 대한 요구사항을 충족시키기 위하여 분산처리에 의한 시뮬레이션이 요구되며 실시간 컴퓨터 환경 내에서 시뮬레이션 소프트웨어를 개발해야 하므로 개발 및 디버그, 유지보수가 매우 어렵다. 특히 실시간, 무 교착상태의 고성능 분산코드를 작성하는 경우는 더욱 그러하다. 본 연구에서 구축하는 회전익기 HILS 환경은 이러한 어려움을 상당부분 처리함으로써 사용자가 직접 코드를 손대지 않고 HILS 및 시뮬레이션을 수행할 수 있도록 상용화된 부품과 개발된 최신 툴을 이용하여 구성하였다. Matlab/Simulink 환경에서 개발된 회전익기 비행시뮬레이션 소프트웨어를 기준으로 하여 HILS 환경 및 MILS(Man In the Loop) 환경이 추가되어 조종사의 직접 입력에 대한 반응을 실제 하드웨어에 피드백 하는 MILS-HILS 통합 환경을 구축하였다. 개발기간의 단축 및 유지보수의 편의를 위하여 RT-Lab을 사용하여 실시간 코드를 생성하고 타켓컴퓨터에 다운로드 하는 방식으로 실시간 시뮬레이션이 가능하다.

  • PDF

듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구 (A Study on Synchronization Control Technique of Dual-Servo Press System)

  • 나상건;권오신;강재훈;허훈
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

인버터 에어컨 시스템의 역률보상을 위한 AC-DC 컨버터 제어 (AC-DC Converter Control for Power Factor Correction of Inverter Air Conditioner System)

  • 박귀근;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.154-162
    • /
    • 2007
  • In this paper, we propose a new AC-DC converter control method to comply with harmonics regulation(IEC 61000-3) effective for the inverter system of an air conditioner whose power consumption is less than 2,500W. There are many different ways of AC-DC converter control, but this paper focuses on the converter control method that is adopting an input reactor with low cost silicon steel core to strengthen cost competitiveness of the manufacturer. The proposed control method controls input current every half cycle of the line frequency to get unit power factor and at the same time to reduce switching loss of devices and acoustic noise from reactor. This kind of converter is known as a Partial Switching Converter(PSC). In this study, theoretical analysis of the PSC has been performed using Matlab/Simulink while a 16-bit micro-processor based converter has been used to perform the experimental analysis. In the theoretical analysis, electrical circuit models and equations of the PSC are derived and simulated. In the experiments, micro-processor controls input current to keep the power factor above 0.95 by reducing the phase difference between input voltage and current and at the same time to maintain a reference DC-link voltage against voltage drop which depends on DC-link load. Therefore it becomes possible to comply with harmonic regulations while the power factor is maximized by optimizing the time of current flow through the input reactor for every half cycle of line frequency.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘 (Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.