• 제목/요약/키워드: MASS LOSS RATE

Search Result 400, Processing Time 0.032 seconds

Effect of Ephedra Sinica and Evodia Rutaecarpa on Resting Metabolic Rate in Obese Premenopausal Women during Low-calorie Diet: A Randomized Controlled Clinical Trial (저열량 식이요법을 한 폐경 전 비만 여성의 휴식 대사량에 대한 마황과 오수유의 효과)

  • Kim, Su-Jin;Ko, Byung-Pyo;Kim, Hyung-Do;Kim, Jin-Ah;Park, Jeong-Mi;Choi, Seung-Ki;Jeon, Uoo-Hyun;Kim, Ho-Jun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.45-54
    • /
    • 2004
  • Objective: To evaluate the effect of Ephedra Sinica and Evodia Rutaecarpa on resting metabolic rate(RMR), weight and body composition in obese women during low-calorie diet. Methods: We recruited 90 healthy premenopausal women$(body\;mass\;index{\geq}25kg/m^2)$ and randomly assigned to three groups(ephedra group, evodia group and placebo group). Subjects were administered Ephedra Sinica(6g twice a day) or Evodia Rutaecarpa(6g twice a day) or placebo in a double-blind fashion and participated in low-calorie diet for 8 weeks. Resting metabolic rate and body composition were measured at baseline, 4 and 8 weeks. Results: RMR change for 4 weeks was significantly higher in the ephedra group compared with the placebo group(p<.05). But the change for 8 weeks was not significant and the Evodia group showed no significant RMR change. Weight and percent body fat changes for 4 weeks and 8 weeks were significantly higher than the placebo group in the ephedra group(p<.05), but the Evodia group didn't show significant level. Conclusions: This study supports and emphasizes the benefits of herbal medicine in maintaining or increasing RMR during low-calorie diet. Especially Ephedra treatment was effective on significant maintainment of RMR, loss of weight and percent body fat(P<.05).

  • PDF

Combustion Chracteristics of Wood Treated with Bis-(dialkylaminoalkyl) Phosphinic Acids (비스-디알킬아미노알킬 포스핀산으로 처리된 목재의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid (DBDAP). Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It is supposed that the combustion-retardation properties were improved by the partial due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the lower total smoke release rate (TSRR) ($16.94{\sim}18.92m^2/m^2$) and lower $CO_{2mean}$ production (1.98~2.09 kg/kg) than those of virgin plate. However the specimens treated with chemicals showed both the higher peak mass loss rate (PMLR) (0.1250~0.1297 g/s) and higher 1st-smoke production rate (SPR) (0.0153~0.0167 g/s) than those of virgin plate. Compared with virgin Pinus rigida plate, the specimens treated with the bis-dialkylamimoalkyl phosphinic acids showed partially low combustive properties.

Effects of Water Temperature and Body Weight on Oxygen Consumption Rate of Black Rockfish, Sebastes schlegeli (조피볼락, Sebastes schlegeli의 산소 소비율에 미치는 수온과 체중의 영향)

  • Oh, Sung-Yong;Noh, Choong Hwan;Myoung, Jung-Goo;Jo, Jae-Yoon
    • Korean Journal of Ichthyology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of water temperature (T) and body weight (W) on the oxygen consumption of the fasted black rockfish, Sebastes schlegeli was investigated to provide empirical data for the culture management and bioenergetic growth model of this species. The mean wet body weights of two fish groups used for the present experiment were $12.9{\pm}2.7g$ ($mean{\pm}SD$) and $351.1{\pm}9.2g$. The oxygen consumption rate (OCR) was measured under three water temperature regimes (15, 20 and $25^{\circ}C$) at an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and 45 fish in small size groups and 6 fish in large size groups were used. The OCRs increased with increasing water temperature in both size groups (p<0.001). Mean OCRs at 15, 20 and $25^{\circ}C$ were 414.2, 691.5 and $843.8mg\;O_2\;kg^{-1}h^{-1}$ in small size groups, and 182.0, 250.7 and $328.2mg\;O_2\;kg^{-1}h^{-1}$ in large size groups, respectively. The OCRs decreased with increasing body weights in three water temperature groups (p<0.001). The mass effect on metabolic rate can be expressed by the power of 0.69~0.75. The data are best described by the relationship: OCR=89.12+28.79T-1.17W. $Q_{10}$ values ranged 1.90~2.79 between 15 and $20^{\circ}C$, 1.49~1.71 between 20 and $25^{\circ}C$, and 1.80~2.03 over the full temperature range, respectively. The energy loss by metabolic cost increased with increasing water temperature and decreasing body weight (p<0.001). Mean energy loss rates by oxygen consumption at 15, 20 and $25^{\circ}C$ were 282.9, 472.3 and $576.3kJ\;kg^{-1}d^{-1}$ in small size groups and 124.3, 171.3 and $224.1kJ\;kg^{-1}d^{-1}$ in large size groups, respectively.

Burning Behavior of Flooring Materials in the Cone Calorimeter and Evaluation of Toxic Smoke (콘 칼로리미터를 이용한 건축 바닥재의 연소거동과 가스유해성 평가)

  • Lee, Jang-Won;Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • The burning behaviors of board for flooring materials were investigated using cone calorimetry at an incident heat flux of $50kWm^{-2}$. Seven domestic flooring materials were used to observe the burning behavior of maximum heat release rate, total heat release and average heat release rate. The experimental data indicated that the medium density fiberboard (MDF) flooring had higher release rate than the other flooring materials. Also, the mass loss of MDF flooring was higher than the other floors. When measuring the smoke production from burning, PE fiberboard flooring and PVC Plastic Resin Sheet showed higher carbon monoxide and carbon dioxide yield than the others. The average smoke release of both carbon dioxide and carbon monoxide through specific extinction area was similar. Toxic smoke measurement from flooring materials were determined by the mouse stop motion, and the results indicated that MDF flooring contains more toxic material than the other flooring materials.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment (부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.97-105
    • /
    • 2009
  • Development and use of blended cement concrete is gaining more importance in the construction industry with reference to durability mainly due to the pore refinement and reduction in permeability. Cracks play a major role on important parameters like permeability, rate of chloride ingress, compressive strength and thus affect the reinforcement corrosion protection. Furthermore, when a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the penetration of concrete has been the subject of numerous investigations. Therefore assessing the service life using blended concrete becomes obviously in considering the durability. In the present study, the corrosion assessment of composite concrete beams with and without crack with of 0.3mm using OPC, 30% PFA, 60% GGBS, 10% SF was performed using half cell potential measurement, galvanic potential measurement, mass loss of steel over a period of 60days under marine environmental conditions and the results were discussed in detail.

The Weight Reduction Effect of Yeast Hydrolysate-SR101 on Female College Students

  • Jung, Eun-Young;Son, Heung-Soo;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.123-128
    • /
    • 2009
  • This study was conducted to evaluate the weight reduction effect of yeast hydrolysate-SR101. Thirty female college students participated in a 6 week weight control program. All subjects were randomly assigned to either the placebo group, YH-SR101 (yeast hydrolysate-SR101) group, or eX diet (product of yeast hydrolysate-SR101) group. The mean energy intake of the placebo group was 1445.2${\pm}$364.0 kcal (carbohydrate: 60.1%, protein: 25.6%, fat: 14.3%), while those of the YH-SR101 and the eX diet group were 1505.6${\pm}$296.2 kcal (carbohydrate: 60.5%, protein: 22.2%, fat: 14.8%) and 1353.8${\pm}$326.3 kcal (carbohydrate: 63.2%, protein: 20.9%, fat: 15.9%), respectively. The placebo group lost 0.19${\pm}$1.14 kg of body weight, while the treatment groups (YH-SR101 and eX diet) lost 1.13${\pm}$0.83 and 1.54${\pm}$0.74 kg of body weight, respectively. There were significant differences in the decrease in body weight between the placebo and the treatment group (p<0.05). There were also significant differences in the decrease in fat mass between the placebo and treatment group (p<0.05). Furthermore, the BMI of the YH-SR101 and the eX diet groups also differed significantly before and after the diet program (p<0.05). Additionally, the BMI and waist size reduction of the treatment groups (YH-SR101 and eX diet group) differed significantly when compared to the placebo (p<0.05). The reduction of the resting metabolic rate (RMR) blood glucose, total-cholesterol, HDL-cholesterol, LDL-cholesterol and triglyceride did not differ significantly among groups. Taken together, these findings indicate that consumption of yeast hydrolysate-SR101 and eX Diet may lead to decreased body weight and fat.

Influences of changes in the Thermal Properties on Pyrolysis of Solid Combustibles (열물성의 변화가 고체 가연물의 열분해에 미치는 영향)

  • Hong, Ter-Ki;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • In order to investigate the influence of changes in the thermal properties of solid combustibles on thermal decomposition, a series of solid pyrolysis experiments were performed using a cone calorimeter specified in KS F ISO 5660-1. In the present study, Poly Methyl Methacrylate (PMMA) which does not produce Char during pyrolysis process was used as solid fuel. Results obtained from cone calorimeter experiments were compared to ones obtained from numerical analysis of Fire Dynamics Simulator (FDS) 1D pyrolysis model adopted with thermal properties of solid fuel as input parameters. Comparisons between experimentally calculated and model-predicted mass loss rate were then made to elucidate the effect of changes in the thermal properties on pyrolysis of PMMA.