• Title/Summary/Keyword: MARS

Search Result 379, Processing Time 0.032 seconds

Nonlinear structural modeling using multivariate adaptive regression splines

  • Zhang, Wengang;Goh, A.T.C.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.569-585
    • /
    • 2015
  • Various computational tools are available for modeling highly nonlinear structural engineering problems that lack a precise analytical theory or understanding of the phenomena involved. This paper adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between variables. The MARS method makes no specific assumptions about the underlying functional relationship between the input variables and the response. Details of MARS methodology and its associated procedures are introduced first, followed by a number of examples including three practical structural engineering problems. These examples indicate that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the model enables engineers to have an insight and understanding of where significant changes in the data may occur. An example is also presented to demonstrate how the MARS developed model can be used to carry out structural reliability analysis.

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

A Case Study in the Mars Landing Site Selection for Science Objects

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.375-380
    • /
    • 2012
  • It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

Analysis of Martian topside ionospheric data obtained from Mars Advanced Radar for Subsurface and Ionospheric Sounding onboard Mars Express

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.2-105.2
    • /
    • 2012
  • The upper ionosphere of Mars has been explored by many spacecraft like Mariners, Mars, Viking, and recently by MGS and MEX. MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) aboard Mars Express Orbiter is operating from August 2005. MARSIS provides topside ionospheric traces, of which yield electron density profiles for altitudes above the primary ionospheric peak. A large amounts of data is useful for investigation of the Martian ionospheric environments under the changing conditions like solar activity, seasons, and solar zenith angle. We studied the characteristics of the Martian ionosphere through analysis of MARSIS data in the various conditions. We expect that our results contribute for understanding of the Martian ionospheric environment.

  • PDF

Spin and shape analysis for the Mars-crossing asteroid 2078 Nanking

  • Choi, Jung-Yong;Kim, Myung-Jin;Choi, Young-Jun;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.85.2-86
    • /
    • 2015
  • The YORP effect is non-gravitational force that changes the spin-status of asteroid. So far this effect has been directly detected only from the Near-Earth asteroids (Taylor et al. 2007; Lowry et al. 2007, 2014; Breiter et al. 2011; Durech et al. 2008, 2012). Pravec at el. 2008 found the evidences for changing spin rate of small asteroids (3 - 15 km) by the YORP effect in the Main-Belt and Mars-crossing asteroids. The Mars-crossing asteroids (1.3 < q < 1.66 AU) are objects that cross orbit of the Mars. The Mars-crossing asteroids are regarded as one of the main sources for the Near-Earth asteroids. We expect that rotation of Mars-crossing asteroids would be influenced by the YORP effect. We try to search observational evidence of the YORP effect for the Mars-crossing asteroid. Our target 2078 Nanking is a population of the Mars-crossing asteroid. First light-curve of 2078 Nanking was obtained from Mohamed et al. 1994, and Warner et al. 2015 recently published new observational data. We observed this asteroid on 26th Nov. 2014 and 17th Jan. 2015 using SOAO (Sobaeksan Optical Astronomy Observatory) 0.61 m telescope with 4K CCD. Using light-curve inversion method (Kaasalainen & Torppa 2001; Kaasalainen et al. 2001), we try to determine the pole orientation and shape model of this asteroid based on the combination of our light-curve and literature photometric data. Knowing spin parameters, such as rotational period and spin axis, are essential for studying the YORP effect. In this presentation, we provide some preliminary results of our recent study: light-curve and processing of shape modeling of 2078 Nanking. We plan to find observational clue for the YORP effect on the Mars-crossing asteroids.

  • PDF

MARS Code Applicability Assessments for the HTGR RCCS (고온가스로 원자로공동냉각계통(RCCS)에 대한 MARS Code 적용성 평가)

  • Kang Doo-Hyuk;Kim Hyung-Seok;Chung Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.232-240
    • /
    • 2005
  • In this study, the IAEA Benchmark problems far HTR-10 and HTTR RCCS were assessed in order to assess the applicability of MARS code, a thermal-hydraulic safety analysis code developed for water reactors. The calculated results were compared with those or THERMIX, THANPACST2 code, and available experimental data. The calculated results showed generally good agreements with those obtained by the THERMIX code and THANPACST2 code. Deviations were analyzed to be originated from the simplification of complicated geometry and from the modeling capability of heat transfer characteristics in the HTGR components such as water cooler and air tooler. Especially, it was found that the radiation heat transfer in the reactor cavity played an important role in the after heat removal in the RCCS. Thus, it is concluded that MARS code can be successfully applied to the calculation of the RCCS cooling capability of the HTGR in this study.

IP Multicasting Mechanism using RSVP over MARS Architecture based on Multiple MCSs (다중 MCS MARS와 RSVP를 통한 효율적인 IP 멀티캐스팅 메커니즘)

  • 김진수;양해권
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.55-61
    • /
    • 2002
  • Real-time Internet multi-media services requires fast data transmission, QoS and IP multicast. MARS is proposed to support IP multicast in the ATM Networks based on Internet, and RSVP is proposed to guarantee QoS in the Internet which is originally based on only best-effort service. In this paper, we propose two mechanisms to support IP multicast service involving QoS support over the ATM networks with MARS architecture based on multiple MCSs. In the first mechanism, when an ATM host requests joining into a specific multicast group, the MARS selects a proper MCS among the multiple MCSs to minimize the average time of transfer delay between the sender and the group members. In the second mechanism, when the RSVP reservation message from group member arrive at the MARS, the MARS which can process the RSVP reservation message select again the MCS with using the MCS management table. Finally, we recommend the mechanism to keep the QoS of Internet service and to reduce the processing-overhead between MARS and MCS.

Supporting IP multicast RSVP over ATM (ATM 망에서의 IP 멀티캐스트 RSVP 지원 연동 방안)

  • 최정현;이미정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.444-446
    • /
    • 1998
  • 실시간 멀티미디어 응용의 등장으로 멀티캐스트와 QoS(Quality of Service)필수적인 망 서비스가 부각되고 있다 이에 ATM 기반의 인터넷에서 IP멀티캐스트의 효율적인 처리를 위하여 MARS(Multicast Address Resolution Server)가 제안되었고, 기존의 최선 서비스 기반의 인터넷에서 QoS(Quality of Service)를 지우너하기위하여 RSVP(Resource Reservation Protocol)가 제안되었다. 본 논문에서는 ATM망에서 QoS 가 지원되는 IP 멀티캐스트 서비스를 제공하기위하여 MARS 구조에서 RSVP를 지원하는 방안을 두 가지 제안하고, 시뮬레이션을 통하여 그 성능을 분석하고자 한다. 제안하는 두 가지 방법은 각각 RSVP 전 홉 논드 방식과 MARS서버 방식이라 명명하였다. RSVP전 홉 노드 방식은 송신원으로부터 ATM 망으로 진입하는 노드와 수신원을 향하여 ATM망을 진출하는 노드 간에 각각 일대일 양방향 VC를 설정하여 멀티캐스트 그룹에 속하는 수신원들이 보내는 자원 예약 메시지를 ATM 망에서 전송하는 방안이다. MARS 서버 방식은 MARS서버가 RSVP자원 예약 메시지를 처리하도록 그 기능을 확장함으로써 ATM 망의 제어 VC를 절약할 수 있는 방안이다. 시뮬레이션을 통하여, RSVP흐름의 휴지기간이 짧으면 RSVP전 홉 노드방식이 VC해제율이 낮아져 병목 현상으로 인한 큐잉 지연에 크게 영향을 받고 있는 MARS방식보다 유리함을 볼 수 있었고 RSVP 흐름의 휴지기간이 길 때는 병목 현상이 완화된 MARS방식이 VC설정 지연 단점이 부각된 RSVP 전 홉 노드 방식보다 유리함을 볼 수 있었다.

  • PDF

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.