Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.
모바일 GIS 환경에서 등고선을 표현하기위해서는 지형도와는 별도로 서버로부터 해당 수치 데이터를 전송받아야 한다. 이때 전체 데이터를 전송받는 것은 모바일 환경의 특성상 받아들일 수 없다. 그리고 대표 지점들의 값을 전송받아 보간법으로 중간 데이터를 생성하는 기법은 계산 오버헤드와 등치선의 정확도 문제가 있다. 이 논문에서는 고도정보를 이용하여 생성하는 등고선 정보를 모바일 클라이언트로 효율적으로 전송하기 위한 자료구조와 알고리즘을 소개하고 구현 결과를 보인다.
모바일 GIS 환경에서 등치선을 표현하기 위해서는 지형도와는 별도로 서버로부터 해당 수치 데이터를 전송 받아야 한다. 이때 전체 데이터를 전송받는 것은 모바일 환경의 특성상 무리가 따른다. 그리고 대표값을 전송받아 보간법으로 중간 데이터를 생성하는 기법은 계산 오버 헤드와 등치선의 정확도 문제가 있다. 이 논문에서는 고도정보를 이용하여 생성하는 등고선 정보를 모바일 클라이언트로 효율적으로 전송하기 위한 자료구조와 알고리즘을 소개하고 구현 결과를 보인다.
본 논문에서는 스테레오 정합을 위한 특징으로 웨이블릿의 이동성(shift ability)을 이용한 윈도우 웨이블릿 기반 스테레오 정합방법을 제안하였다. 기존의 정합방법에서 사용된 전 영상에 대한 웨이블릿 분해는 웨이블릿의 이동성 유지가 이루어지지 않아서 정합 정확도가 떨어진다. 그래서 웨이블릿의 이동성을 신뢰성 있는 정합정보로 사용하기 위해 윈도우로 전체 파형의 일부를 표본화하고 웨이블릿 분해를 수행하여 기준신호와 이동된 신호의 부대역 정보 사이의 상관도(cross-correlation)를 정합정보로 이용하였다. 대역별 상관도는 얻어진 4개의 부대역의 대역별 가중치가 고려되어 계산된다. 제안한 방법은 주파수 대역별 계층적인 정합과 양방향 정합과정을 통해 영상의 경계부분, 동일한 형태의 반복, 잡음(white noise)등이 포함된 영상에서의 오정합을 줄일 수 있었으며 특징정보가 부족한 부분에서의 정합도 개선할 수 있었다.
Al-Hooti, Mohammed Hatem Ali;Djanali, Supeno;Ahmad, Tohari
Journal of Information Processing Systems
/
제12권3호
/
pp.525-537
/
2016
Data hiding is a wide field that is helpful to secure network communications. It is common that many data hiding researchers consider improving and increasing many aspects such as capacity, stego file quality, or robustness. In this paper, we use an audio file as a cover and propose a reversible steganographic method that is modifying the sample values using modulus function in order to make the reminder of that particular value to be same as the secret bit that is needed to be embedded. In addition, we use a location map that locates these modified sample values. This is because in reversible data hiding it needs to exactly recover both the secret message and the original audio file from that stego file. The experimental results show that, this method (measured by correlation algorithm) is able to retrieve exactly the same secret message and audio file. Moreover, it has made a significant improvement in terms of the following: the capacity since each sample value is carrying a secret bit. The quality measured by peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), Pearson correlation coefficient (PCC), and Similarity Index Modulation (SIM). All of them have proven that the quality of the stego audio is relatively high.
Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.
International Journal of Fuzzy Logic and Intelligent Systems
/
제10권2호
/
pp.101-106
/
2010
We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.
최근 소셜 미디어의 성정과 모바일 장치와 같은 디지털 기기의 활용이 증가함에 따라 데이터가 기하급수적으로 증가하였다. 이러한 대용량의 데이터를 처리하기 위한 대표적인 프레임워크로 맵-리듀스가 등장하였다. 하지만 전용 분산 컴퓨팅 환경에서의 균등한 데이터 배치를 기반으로 수행되는 기존 맵-리듀스는 가용성이 다른 비-전용 분산 컴퓨팅 환경에서는 적합하지 않다. 이를 고려한 비-전용 분산 컴퓨팅 환경에 최적화된 데이터 재배치 알고리즘이 제안되었지만, 데이터 재배치 알고리즘을 수행함으로써 재배치에 많은 시간을 필요로 하고, 불필요한 데이터 전송에 의한 네트워크 부하가 발생한다. 본 논문에서는 비-전용 분산 컴퓨팅 환경에서 맵-리듀스의 성능 최적화를 위한 효율적인 데이터 재배치 알고리즘을 제안한다. 제안하는 기법에서는 노드의 가용성 분석 모델을 기반으로 노드의 데이터 블록 비율을 연산하고, 기존의 데이터 배치를 고려하여 전송함으로써 네트워크 부하를 감소시킨다. 성능평가 결과 기존 기법에 비해 데이터 재배치 블록 비율이 약 75% 감소하였다.
Recently, it is demanded to study about landscape. Landscape is an environment factor for improving life, a social resource for establishing image and identity of the area and also a tourist resource for earning profit. With this importance, landscape planning is being performed by local governments. However, classification for a rule about landscape planning is not prepared yet. For this purpose, classification of landscape is definitely required. Therefore, this article focuses on presenting method of classification Natural and Rural Landscape. We used Arcview 3.2 to draw watershed of the site, and calculated the percent of landform. We also took a picture which explain the landscape and made a survey of classifying the landscape. Due to this study, we were able to frame an algorithm of the landscape classification. This will contribute to classify the landscape type. This study needs more specific researches because it was supposed to target the entire Gyeonggi-Do however it only covered several regions. Through this results, it would be expected to develop the map of landscape character.
A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.