• Title/Summary/Keyword: MAP Kinase Family

Search Result 25, Processing Time 0.022 seconds

Barbigerone Inhibits Tumor Angiogenesis, Growth and Metastasis in Melanoma

  • Yang, Jian-Hong;Hu, Jia;Wan, Li;Chen, Li-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.167-174
    • /
    • 2014
  • Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with $10{\mu}M$ barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.

Anti-inflammatory and Anti-Oxidant Effects of Oxypaeoniflorin, Paeoniflorin and Paeonia lactiflora cv. 'Red Charm' Flower Petal Extracts in Macrophage Cells

  • Kim, Soo-Ah;Jang, Eun-Seo;Lee, A-Yeon;Lee, Soo-Jung;Kim, June-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.3
    • /
    • pp.153-162
    • /
    • 2020
  • The root extracts of Paeonia lactiflora cv. 'Red Charm' has been studied by many groups, however, little attention has been paid to its flower petal. Paeonia is the genus in the Paeoniaceae family. 'Red Charm' Paeonia is a soft-stemmed herbaceous peony hybrid of P. officinalis and P. lactiflora. We previously showed the flower petal extract of Red Charm might have anti-oxidant and anti-inflammatory activities, however, it was not clear which components might be involved in this activity. Bioinformatics analysis previously indicated these extracts have potential anti-oxidant materials. One of them is identified as paeoniflorin, which is major component in root extract of Red Charm. In this study, we compared paeoniflorin and oxypaeoniflorin using DPPH assays to measure its anti-oxidant activities. Oxypaeoniflorin showed higher levels of radical scavenging activity, similar to ascorbic acid control, whereas paeoniflorin did not. Furthermore, nitric oxide assay showed they have similar anti-inflammatory effects. Taken together, these results suggest oxypaeoniflorin may play a more important role in the anti-oxidant activity of the flower petal and root extracts of Red Charm, compared to paeoniflorin. Further studies may be able to provide a platform to develop potential dual effects therapeutics for oxidant-mediated and inflammation-mediated disease in the near future.

Molecular Cloning and Characterization of a P38-Like Mitogen-Activated Protein Kinase from Echinococcus granulosus

  • Lu, Guodong;Li, Jing;Zhang, Chuanshan;Li, Liang;Bi, Xiaojuan;Li, Chaowang;Fan, Jinliang;Lu, Xiaomei;Vuitton, Dominique A.;Wen, Hao;Lin, Renyong
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.759-768
    • /
    • 2016
  • Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus. We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus. Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens $p38{\alpha}$, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for $p38{\alpha}$. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with $TGF-{\beta}1$ effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus, as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human $TGF-{\beta}1$.

Production of pro-inflammatory cytokines by Porphyromonas gingivalis in THP-1 macrophagic cells

  • Choi, Eun-Kyoung;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.87-95
    • /
    • 2009
  • Porphyromonas gingivalis is a major etiologic agent of chronic periodontitis and cytokines produced by macrophages play important roles in the pathogenesis of periodontal diseases. In this study we investigated the cytokine response of phorbol myristate acetatedifferentiated THP-1 cells exposed to P. gingivalis. Compared with the prominent cell wall components of P. gingivalis (lipopolysaccharide and the major fimbrial protein FimA), live P. gingivalis stimulated much higher levels of cytokine production. In addition, whereas low multiplicity of infection challenges (MOI=10) of P. gingivalis 381 stimulated high levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and IL-1${\beta}$, high dose challenges with this bacterium (MOI = 100) resulted in a substantially diminished production of MCP-1 and IL-6. Moreover, high MOI P. gingivalis challenges achieved only low levels of induction of MCP-1 and IL-6 mRNA. The decreased production of MCP-1 and IL-6 appeared to be mediated by P. gingivalis proteases, because high MOI challenges with congenic protease mutant strains of this microorganism (MT10 and MT10W) did not result in a diminished production of MCP-1 and IL-6. Similar to its protease mutant strains, leupeptin (a protease inhibitor)- treated P. gingivalis at high doses induced high levels of MCP-1 production. To examine the mechanisms underlying the diminished production of MCP-1 by P. gingivalis proteases, the activation of mitogen-activated protein (MAP) kinases and NF-${\kappa}$B was compared between the 381 and MT10W strains. Whilst high doses of both 381 and MT10W similarly activated the three members of the MAP kinase family, the DNA binding activity of NF-${\kappa}$B, as revealed by gel shift assays, was greatly increased only by MT10W. Taken together, our data indicate that P. gingivalis stimulates the production of high levels of TNF-${\alpha}$, IL-1${\beta}$, IL-6, and MCP-1 but that high dose challenges with this bacterium result in a diminished production of MCP-1 and IL-6 via the protease-mediated suppression of NF-${\kappa}$B activation in THP-1 macrophagic cells.

Dasatinib Inhibits Lyn and Fyn Src-Family Kinases in Mast Cells to Suppress Type I Hypersensitivity in Mice

  • Lee, Dajeong;Park, Young Hwan;Lee, Ji Eon;Kim, Hyuk Soon;Min, Keun Young;Jo, Min Geun;Kim, Hyung Sik;Choi, Wahn Soo;Kim, Young Mi
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.456-464
    • /
    • 2020
  • Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. In vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.