Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.1.167

Barbigerone Inhibits Tumor Angiogenesis, Growth and Metastasis in Melanoma  

Yang, Jian-Hong (Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University)
Hu, Jia (Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University)
Wan, Li (State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu University of Traditional Chinese Medicine)
Chen, Li-Juan (Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.1, 2014 , pp. 167-174 More about this Journal
Abstract
Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with $10{\mu}M$ barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.
Keywords
Barbigerone; metastasis; angiogenesis; p38 MAP kinase; melanoma cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhao CJ, Yang HS, Shi HS, et al (2011). Distinct Contributions of Angiogenesis and Vascular Co-option during the Initiation of Microtumors and Micrometastases. Carcinogenesis, 32, 1143-50.   DOI
2 Ye HY, Zhong SJ, Li YF, et al (2010). Enrichment and isolation of barbigerone from Millettia pachycarpa Benth. using highspeed counter-current chromatography and preparative HPLC. J Sep Sci, 33, 1010-7.
3 Yenesew A, Derese S, Midiwo JO, Oketch-Rabah HA, Lisgarten J, Palmer R, et al (2003). Anti-plasmodial activities and X-ray crystal structures of rotenoids from Millettia usaramensis subspecies usaramensis". Phytochem, 64, 773-9.   DOI
4 Yenesew A, Midiwo JO, Waterman PG (1998). Rotenoids, isoflavones and chalcones from the stem bark of Millettia usaramensis subspecies usaramensis. Phytochem, 47, 295-300.   DOI
5 Zhang D, Li B, Shi J, et al (2010). Suppression of Tumor Growth and Metastasis by Simultaneously Blocking Vascular Endothelial Growth Factor (VEGF).-A and VEGF-C with a Receptor-Immunoglobulin Fusion Protein. Cancer Res, 70, 2495-503.   DOI
6 Tozer GM, Kanthou C, Baguley BC (2005). Disrupting tumor blood vessels. Nat Rev Cancer, 5, 423-35.   DOI
7 Reddy KB, Nabha SM, Atanaskova N (2003). Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev, 22, 395-403.   DOI   ScienceOn
8 Small JV, Rottner K, Kaverina I, Anderson KI (1998). Assembling an actin cytoskeleton for cell attachment and movement. Biochim Biophys Acta, 1404, 271-81.   DOI
9 Tournaire R, Simon MP, le Noble F, et al (2004). A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep, 5, 262-7.   DOI   ScienceOn
10 Uzgare AR, Kaplan PJ, Greenberg NM (2003). Differential expression and/or activation of P38MAPK, erk1/2, and jnk during the initiation and progression of prostate cancer. Prostate, 55, 128-39.   DOI
11 Vicent S, Garayoa M, Lopez-Picazo JM, et al (2004). Mitogenactivated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res, 10, 3639-49.   DOI   ScienceOn
12 Vilain C (1980). Barbigerone, a new pyranoisoflavone from seeds of Tephrosia barbigera. Phytochem, 19, 988-9.   DOI
13 Wangensteen H, Miron A, Alamgir M, et al (2006). Antioxidant and 15-lipoxygenase inhibitory activity of rotenoids, isoflavones and phenolic glycosides from Sarcolobus globosus. Fitoterapia, 77, 290-5.   DOI   ScienceOn
14 Gupta GP, Massague J (2006). Cancer metastasis: building a framework. Cell, 127, 679-95.   DOI   ScienceOn
15 Webb CP, Van Aelst L, Wigler MH, Woude GF (1998). Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci USA, 95, 8773-8.   DOI
16 Hsia DA, Mitra SK, Hauck CR, et al (2003). Differential regulation of cell motility and invasion by FAK. J Cell Biol, 160, 753-67.   DOI   ScienceOn
17 Folkman J, Shing Y (1992). Angiogenesis. J Biol Chem, 267, 10931-4.
18 Johnson GL, Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298, 1911-2.   DOI   ScienceOn
19 Huang D, Ding Y, Luo WM, et al (2008). Inhibition of MAPK Kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res, 68, 81-8.   DOI   ScienceOn
20 Kruger EA, Duray PH, Price DK, Pluda JM, Figg WD (2001). Approaches to preclinical screening of antiangiogenic agents. Semin Oncol, 28, 570-6.   DOI
21 Lee JC, Laydon JT, Mcdonnell PC, et al (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 372, 739-46.   DOI   ScienceOn
22 Li X, Wang X, Ye H, Peng A, Chen L (2012). Barbigerone, an isoflavone, inhibits tumor angiogenesis and human non-smallcell lung cancer xenografts growth through VEGFR2 signaling pathways.Cancer Chemother Pharmacol, 70, 425-37.   DOI
23 Olson MF, Sahai E (2009). The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis, 26, 273-87.   DOI   ScienceOn
24 Patan S (2004). Vasculogenesis and angiogenesis. Cancer Treat Res, 117, 3-32.   DOI
25 Carmeliet P, Base M (2008). Metabolism and therapeutic angiogenesis. N Engl J Med, 358, 2511-2.   DOI
26 Raingeaud J, Gupta S, Rogers JS, et al (1995). Pro-inflammatory cytokines and environmental stress cause p38 mitogenactivated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem, 31, 270, 7420-6.   DOI   ScienceOn
27 Amundadottir LT, Leder P (1998). Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene, 16, 737-46.   DOI
28 Carmeliet P (2003). Angiogenesis in health and disease. Nat Med, 9, 653-60.   DOI   ScienceOn
29 Carmeliet P, Jain RK (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249-57.   DOI   ScienceOn
30 Davidson B, Konstantinovsky S, Kleinberg L, et al (2006). The mitogen-activated protein kinases (MAPK). p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol, 102, 453-61.   DOI
31 Fan TP, Yeh JC, Leung KW, Yue PY, Wong RN (2006). Angiogenesis: from plants to blood vessels. Trends Pharmacol Sci, 27, 297-309.   DOI
32 Ferrara N, Kerbel RS (2005). Angiogenesis as a therapeutic target. Nature, 438, 967-74.   DOI   ScienceOn
33 Folkman J (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med, 285, 1182-6.   DOI   ScienceOn
34 Wangensteen H, Alamgir M, Rajia S, Samuelsen AB, Malterud KE (2005). Rotenoids and isoflavones from Sarcolobus globosus. Planta Med, 71, 754-8.   DOI