Browse > Article
http://dx.doi.org/10.7732/kjpr.2020.33.3.153

Anti-inflammatory and Anti-Oxidant Effects of Oxypaeoniflorin, Paeoniflorin and Paeonia lactiflora cv. 'Red Charm' Flower Petal Extracts in Macrophage Cells  

Kim, Soo-Ah (Department of Biotechnology, The University of Suwon)
Jang, Eun-Seo (Department of Biotechnology, The University of Suwon)
Lee, A-Yeon (Department of Biotechnology, The University of Suwon)
Lee, Soo-Jung (Department of Biotechnology, The University of Suwon)
Kim, June-Hyun (Department of Biotechnology, The University of Suwon)
Publication Information
Korean Journal of Plant Resources / v.33, no.3, 2020 , pp. 153-162 More about this Journal
Abstract
The root extracts of Paeonia lactiflora cv. 'Red Charm' has been studied by many groups, however, little attention has been paid to its flower petal. Paeonia is the genus in the Paeoniaceae family. 'Red Charm' Paeonia is a soft-stemmed herbaceous peony hybrid of P. officinalis and P. lactiflora. We previously showed the flower petal extract of Red Charm might have anti-oxidant and anti-inflammatory activities, however, it was not clear which components might be involved in this activity. Bioinformatics analysis previously indicated these extracts have potential anti-oxidant materials. One of them is identified as paeoniflorin, which is major component in root extract of Red Charm. In this study, we compared paeoniflorin and oxypaeoniflorin using DPPH assays to measure its anti-oxidant activities. Oxypaeoniflorin showed higher levels of radical scavenging activity, similar to ascorbic acid control, whereas paeoniflorin did not. Furthermore, nitric oxide assay showed they have similar anti-inflammatory effects. Taken together, these results suggest oxypaeoniflorin may play a more important role in the anti-oxidant activity of the flower petal and root extracts of Red Charm, compared to paeoniflorin. Further studies may be able to provide a platform to develop potential dual effects therapeutics for oxidant-mediated and inflammation-mediated disease in the near future.
Keywords
Inflammation; MAP Kinase; Nitric Oxide; Radical Scavenging;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ahn, M.S., P.H. Park, Y.N. Kwon, M.N. Mekapogu, S.W. Kim, E.Y. Jie, J.A. Jeong, J.T. Park and O.K. Kwon. 2018. Discrimination of floral scents and metabolites in cut flowers of Peony (Paeonia lactiflora Pall.) cultivars. Korean J. Plant Res. 31(6):641-651 (in English).   DOI
2 Ye, G., Y.Z. Li, Y.Y. Li, H.Z. Guo and D.A. Guo. 2003. SPE-HPLC method for the determination and pharmacokinetic studies on paeoniflorin in rat serum after oral administration of traditional Chinese medicinal preparation Guan-Xin-Er-Hao decoction. J. Pharm. and Biomed. Anal. 33:521-527.   DOI
3 Yoo, C.K., J.H. Hwang, K. Lee, J. Lee, Y.J. Lee, K.J. Kim and B.Y. Lee. 2018. Anti-inflammatory effects of Moutan Cortex Radicis extract, paeoniflorin and oxypaeoniflorin through TLR signaling pathway in RAW264.7 cells. J of Food and Nutri. Res. 6(1):26-31.
4 Yoon, Y.C., H.J. Choi,er J.H. Park, N. Iniyah, H.A. Shin and M.Y. Kim. 2019. Combination of grapefruit and rosemary extracts has skin protective effect through MMPs, MAPKs, and the NF-${\kappa}$B signaling pathway in vitro and in vivo UVB-exposed model. Korean J. Plant Res. 32(6):633-63 (in English).   DOI
5 Zhang, T., Zhu Q, Shao Y, Wang K, and Y. Wu. 2017. Paeoniflorin prevents TLR2/4-mediated inflammation in type 2 diabetic nephropathy. Biosci Trends. 11(3):308-318.   DOI
6 Zheng, Q, W. Jiang, X. Sun, T. Ma, W. Xu, F. Shen, H. Li, S. Xie, B. Li and X. Li. 2019. Total glucosides of paeony for the treatment of psoriasis: A systematic review and meta-analysis of randomized controlled trials. Phytomedicine 62:152940. doi:10.1016/j.phymed.2019.152940.   DOI
7 Zhu, L, S. Sun, Y. Hu and Y. Liu. 2018. Metabolic study of paeoniflorin and total paeony glucosides from Paeoniae Radix Rubra in rats by high-performance liquid chromatography coupled with sequential mass spectrometry. Biomed Chromatogr. Bio. 32(4):e4141.   DOI
8 Wang, Q.S., T. Gao, C. Yuan-Lu, G. Li-Na and H.L. Jiang. 2014. Comparative studies of paeoniflorin and albiflorin from paeonia lactiflora on anti-inflammatory activities. Pharm Biol. 52(9):1189-1195.   DOI
9 Lee, B.G., J.H. Kim, S.G. Ham and C.E. Lee. 2014. Study on biological activities of extracts for cosmeceutical development from Lagerstroemia indica L. branch. Korean J. Plant Res. 27:29-34 (in Korean).   DOI
10 Kim, J.H., Y.B. Choi, H.J. Lee, Y.H. Kim, J.H. Kim, J.M. Sim, and Y.S. Sohn. 2016. Fourier transform ion cyclotron resonance (FT-ICR) MASS spectrophotometric analysis of flower petal from Paeonia lactiflora cv. 'Red Charm' and evaluation of its functional activity. Korean J. Plant Res. 29(5):588-597 (in Korean).   DOI
11 Lee, N.H., S.J. Lee, D.S. Jung, H.J. Bu, H.C. Yang and K.Z. Riu. 2001. Screening of the tyrosinase inhibition activities, and radical scavenging effects using plants in Cheju. Kor J. Pharmacogn. 32(3):175-180.
12 Li J, S. Huang, W. Huang, Wang W, G. Wen, L. Gao, X. Fu, M. Wang, W. Liang, H.Y. Kwan, X. Zhao and Z. Lv. 2017. Paeoniflorin ameliorates interferon-alpha-induced neuroinflammation and depressive-like behaviors in mice. Oncotarget 8(5):8264-8282.   DOI
13 Li, H., Y. Jiao and M. Xie. 2017. Paeoniflorin ameliorates atherosclerosis by suppressing TLR4-mediated NF-${\kappa}$B activation. Inflammation 40(6):2042-2051.   DOI
14 Liu, S.C., W.Y. Hu, W.Y. Zhang, L. Yang, Y. Li, Z.C. Xiao, M. Zhang and Z.Y. He. 2019. Paeoniflorin attenuates impairment of spatial learning and hippocampal long-term potentiation in mice subjected to chronic unpredictable mild stress. Psychopharmacology (Berl). 2019(5):1-12.
15 Mao, Q.Q., S.P. Ip, S.H. Tsai and C.T. Che. 2008. Antidepressant-like effect of peony glycosides in mice. J. Ethnopharma. 119:272-275.   DOI
16 Mlcek, J., T. Jurikova, S. Skrovankova and J. Sochor. 2016. Quercetin and its anti-allergic immune response. Molecules 21(5):E623.
17 Furuya, R., H. Hu, Z. Zhang and H. Shigemori. 2012. Suffruyabiosides A and B, Two New Monoterpene Diglycosides from Moutan Cortex. Molecules 17(5):4915-4923.   DOI
18 Bang, M.H., S.Y. Lee, J.C. Song, S.Y. Lee, N.K. Park and N.I. Baek. 1999. Isolation and structure determination of antioxidants from the root of Paeonia lactiflora. J. Korean Soc. Agric. Chem. Biotechnol. 42(2):170-175.
19 Carmichael, J., W.G. DeGraff, A.F. Gazdar, J.D. Minna and J.B. Mitchell. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47(4):936-42.
20 Cheng, J.T., C.J. Wang and F.L. Hsu. 1999. Paeoniflorin reverses guanethidine-induced hypotension via activation of central adenosine A1 receptors in Wistar rats. Clin. Exp. Pharmacol. Physiol. 26:815-816.   DOI
21 Grant, R. 2012. An Update on Plant Derived Anti-Androgens. Int. J. Endo. Metabol. 10(2):497-502.   DOI
22 Han, S.Y. and E.Y. Lee. 2011. Effect of Paeoniae Radix Rubra Extract on the Production of NO and Prostaglandin E2 in LPS-stimulated RAW264.7 Marcrophages. J Acup. Res. 28(1):77-84.
23 He, D.Y. and S.M. Dai. 2011. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine, Front. Pharmacol. 2:10.   DOI
24 Kim, I.D. and J.H. Ha. 2009. Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicol In Vitro. 23(6):1014-1019.   DOI
25 Kim, I.D. and J.H. Ha. 2010. The effects of paeoniflorin on LPS-induced liver inflammatory reactions. Arch Pharm Res. 33(6):959-66.   DOI
26 Park, M.S. and Y.M. Chun. 2015. The usage of regional folk plants in Jeollanam-do. Korean J. Plant Res. 28(1):79-92 (in Korean).   DOI
27 Soka, T. 1985. Encyclopedia of Chinese Medicine. Tokyo, Japan. 3:2066-2070.
28 Park, Y.K., J.Y. Min and J.H. Lee. 2009. The effect of methyl gallate isolated from Paeonia suffruticosa on inflammatory response in LPS-stimulated RAW264.7 Cells. Kor. J. Herbol. 24(4):181-188.
29 Ralph, P, and I. Nakoinz. 1977. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J. Immunol. 119:950-954.
30 Sharma, O.P. and T.K. Bhat. 2009. DPPH antioxidant assay revisited. Food Chem. 113:1201-1205.
31 Suh, S.Y. 2001. Screening of tyrosinase inhibitors from oriental herbs. Korean J. Plant Res. 14(1):32-37 (in Korean).
32 Takeuchi, T., O. Nishii, T. Okamura and T.Yaginuma. 1991. Effect of paeoniflorin, glycyrrhizin and glycyrrhetic acid on ovarian androgen production. The Amer. J. Chinese Med. 19(1):73-78.   DOI
33 Tanaka, T., M. Kataoka, N. Tsuboi and I. Kouno. 2000. New monoterpene glycoside esters and phenolic constituents of Paeoniae radix, and increase of water solubility of proanthocyanidins in the presence of paeoniflorin. Chem. Pharm. Bul. 48(2):201-207.   DOI
34 Park, H.J. 2019. Isolation of the constituent inhibiting nitric oxide formation from Lycopus lucidus in LPS-induced macrophage cells. Korean J. Plant Res. 32(4):264-269 (in Korean).
35 Wang, J.S., Y. Huang, S. Zhang, H.J. Yin, L. Zhang, Y.H. Zhang, Y.W. Song and D.D. Li. 2019. A protective role of paeoniflorin in fluctuant hyperglycemia-induced vascular endothelial injuries through antioxidative and anti-inflammatory effects and reduction of PKC${\beta}$1. Oxid Med Cell Longev. 2019(4) 5647219. doi:10.1155/2019/5647219.20.