• Title/Summary/Keyword: MALDI-TOF/MS

Search Result 280, Processing Time 0.023 seconds

Bacterial Identification and Detection of Equol in Korean Soybean Paste (한국 된장에서 Equol의 검출 및 미생물 동정)

  • Woo, Seung-Gyun;Lee, So-Yeon;Choi, Go-Woon;Hong, You-Jin;Lee, So-Min;Park, Kang Gyun;Eom, Yong-Bin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.286-291
    • /
    • 2015
  • Equol has beneficial effects on human health. Fermented soy products contain equol, and many microbes participate in the equol production process. This study investigated fermented Korean soybean paste, doenjang. Thirty seven doenjang samples collected from different manufacturers were examined. Equol was detected in 3 samples (D2, D13, and D19) at the maximum content of 507 ng/100 g by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifteen microbial species were isolated and identified by 16S rRNA gene sequence analysis and by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacillus spp, Paenibacillus spp, Tetragenococcus spp, Stapylococcus spp, and Clostridium species were the predominant bacteria in equol containing doenjang samples.

Proteomic Approach to the Cytotoxicity of 5-FU(Fluorouracil) in Colon Cancer Cells (대장암 세포에서 5-FU(Fluorouracil)의 세포독성과 관련된 단백체 분석)

  • Lee, Seo-Young;Song, Jin-Su;Roh, Si-Hun;Kim, Geun-Tae;Hong, Soon-Sun;Kim, Hie-Joon;Kwon, Sung-Won;Park, Jeong-Hill
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.145-150
    • /
    • 2009
  • We evaluated cytotoxic effect based on the MTT assay and identified altered proteins in 5-FU(fluorouracil) treated HT29 cells using two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS. As proteins inducing apoptosis, siah binding protein 1 and p47 protein isoform a were up-regulated and tumor protein translationally-controlled 1 was down-regulated by 5-FU treatment. And mannose 6 phosphate receptor binding protein 1 controls DNA mismatch repair system was increased. We suggest 5-FU promotes a cytotoxicity under the action of these proteins in colon cancer cells.

Differential protein expression in avian liver in response to invasion by Salmonella gallinarum

  • Lee, Gang-Deog;Cho, In-Hee;So, Hyun-Kyung;Koo, Yong-bum;Lee, Jun-heon;Choi, Kang-Duk
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.37-38
    • /
    • 2004
  • Salmonella gallinarum is a pathogen that is capable of causing disease in Korean native chicken. Although Salmonella gallinarum is important world-wide pathogens of poultry, little is understood of the mechanisms of pathogenesis of Salmonella gallinarum in the chicken. This study was to investigate chicken liver proteins affected by infection of Salmonella gallinarum in Korean native chicken. The differentially expressed proteins of chicken livers were identified by using 2-dimensional electro- phoresis (2D-E) and mass spectrometry (MS). We detected more than 300 protein spots on silver stained 2D gels using pH 3∼10 gradients. Three differentially expressed protein spots were analyzed by MALDI-TOF MS and MS/MS. The obtained MS and MS/MS data were searched against a protein database using the Mascot search engine. Further researches on the identified proteins can give valuable information of mechanism of pathogenesis in chicken.

  • PDF

Protein Expression Profiling of Infected Murine Macrophage Cells (RAW 264.7) by Bacillus anthracis Spores

  • Seo Gwi-Moon;Nam Jeong-Ah;Oh Kwang-Gun;Chai Young-Gyu
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.77-79
    • /
    • 2003
  • Current therapeutic strategies far anthrax have had no significant impact on anthrax mortality over the last several decades. This study used a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) discovery platform to generate protein expression profiles in search of overexpressed proteins in murine macrophage cells (RAW264.7) which infected with Bacillus anthracis spores as potentially novel molecular targets. Two differentially expressed proteins were identified in infected murine macrophage cells as Syndapin and CDC46, respectively. Syndapins are potential links between the cortical actin cytoskeleton and endocytosis. Other two proteins were identified from murine macrophage cells infected with avirulent spores as ITBG-2 (CD18) and HSPA5, respectively. These data demonstrate the feasibility of using a MALDI-TOF platform to generate protein expression profiles and identify potential molecular targets for anthrax therapeutics.

  • PDF

Occurrence of Microcystin-Containing Toxic Water Blooms in Central India

  • Agrawal Manish K.;Ghosh Shubhro K.;Bagchi Divya;Weckesser Juergen;Erhard Marcel;Bagchi Suvendra N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.212-218
    • /
    • 2006
  • Three out of fourteen Microcystis-dominant cyanobacterial blooms in Central India were found to be toxic to mice ($LD_{50}$ ranging from 35-450 mg bloom dry mass/kg body weight). The liver architecture of the treated mice showed characteristic symptoms of hepatotoxicity relative to the untreated controls, with increased enzyme activities of serum lactate dehydrogenase (LDH), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), and serum glutamate pyruvate transaminase (SGPT). RP-HPLC revealed the presence of microcystin-LR, microcystin-RR, and desmethyl microcystin-RR in the given region to maximum amounts of 390, 1,030, and $860{\mu}g/g$ bloom dry weight, respectively, corresponding to a maximum of 2.8 mg/l microcystin-LR in the lake water. Further confirmation of the microcystin variants was conducted using a MALDI-TOF MS analysis.

Toxicoproteomics in the Study of Aromatic Hydrocarbon Toxicity

  • Cho, Chang-Won;Kim, Chan-Wha
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 2006
  • The aromatic hydrocarbons (AHs), which include benzene, polycyclic aromatic hydrocarbons, and dioxin, are important chemical and environmental contaminants in industry that usually cause various diseases. Over the years, numerous studies have described and evaluated the adverse health effects induced by AHs. Currently, "Omics" technologies, transcriptomics and proteomics, have been applied in AH toxicity studies. Proteomics has been used to identify molecular mechanisms and biomarkers associated with global chemical toxicity. It could enhance our ability to characterize chemical-induced toxicities and to identify noninvasive biomarkers. The proteomic approach (e.g. 2-dimensional electrophoresis [2-DE]), can be used to observe changes in protein expression during chemical exposure with high sensitivity and specificity. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization-quadrupole (ESI-Q)-TOF MS/MS are recognized as the most important protein identification tools. This review describes proteomic technologies and their application in the proteomic analysis of AH toxicity.

Biochemical mechanisms of fumigant toxicity by ethyl formate towards Myzus persicae nymphs (복숭아혹진딧물(Myzus persicae) 약충에 대한 에틸포메이트 훈증 독성의 생화학적 메커니즘)

  • Kim, Kyeongnam;Lee, Byung-Ho;Park, Jeong Sun;Yang, Jeong Oh;Lee, Sung-Eun
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • Ethyl formate has been used for the control of insect pests by fumigation. However, there were not many reports to show its target site of fumigant toxicity on insect pests since its first use in the agricultural industry. In the present study, we showed the presumable target sites of ethyl formate fumigation in insect pests using Myzus persicae nymphs. After ethyl formate fumigation, the nymphs of this species were collected and the changes at the biochemical and molecular level were determined. The activity of cytochrome c oxidase (COX) was approximately two-fold higher after ethyl formate fumigation. In addition, the expression levels of acetylcholinesterase (AChE) decreased gradually with increasing ethyl formate concentration. These two findings suggested that COX and AChE might be the major target sites of ethyl formate fumigation. In addition to these results, the analysis of lipid content using MALDI-TOF MS/MS identified 9 phospholipids differently generated 2-fold higher in the ethyl formate-treated nymphs than that in the control nymphs, thereby leading to changes in cell membrane composition in M. persicae nymphs. Therefore, the ethyl formate fumigation caused lethal effects on M. persicae nymphs by changing COX activity, AChE gene expression, and phospholipid production.

Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS

  • Ahmadsah, Lenny S.F.;Kim, Eiseul;Jung, Youn-Sik;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Samples of Laru (a fermentation starter) obtained from the upper part of Borneo Island were analyzed for their lactic acid bacteria (LAB) and fungal diversity using both a culture-independent method (PCR-DGGE) and culture-dependent methods (SDS-PAGE and MALDI-TOF MS). Pediococcus pentosaceus, Lactobacillus brevis, Saccharomycopsis fibuligera, Hyphopichia burtonii, and Kodamaea ohmeri were detected by all three methods. In addition, Weissella cibaria, Weissella paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Rhizopus oryzae/Amylomyces rouxii, Mucor indicus, and Candida intermedia were detected by PCR-DGGE. In contrast, Lactobacillus fermentum, Lactobacillus plantarum, Pichia anomala, Candida parapsilosis, and Candida orthopsilosis were detected only by the culture-dependent methods. Our results indicate that the culture-independent method can be used to determine whether multiple laru samples originated from the same manufacturing region; however, using the culture-independent and the two culture-dependent approaches in combination provides a more comprehensive overview of the laru microbiota.

Purification and Characterization of PC-Like Cadmium-Binding Peptide from Root of Rumex crispus

  • Chang, Ju-Youn;Lee, In-Sook;Park, Jin-Sung;Chang, Yoon-Young;Bae, Bum-Han
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.263-266
    • /
    • 2003
  • This research investigated the process of removing cadmium and tested the detoxification mechanism of the cadmium-binding peptide (Cd-BP) from Rumex crispus. Phytochelatin-like cadmium-binding peptide (PC-Cd-BP) of Rumex crispus was purified and identified. Rumex crispus was exposed to 4.3 mg Cd/L for seven days. Heat-treated supernatant fraction taken by root tissues showed traces of PC-Cd-BP An analysis of the material through Gel-filteration chromatography on the Sephadex G-75 column showed two symmetrical Cd-BP peaks. The major peak with the smaller molecular weight was further purified by $C_{18}$ reverse-phase HPLC to produce apparent homogeneity. The amino acid composition of Cd-BP from Rumex crispus included cysteine (22.6%), glutamate and glutamate acid (20%), and glycine (12%). It was similar the amino acid composition of most PC. The molecular weight of the purified peptide was determined at 568-706 Da by MALDI-TOF MS. Therefore, the Cd-BP of Rumex crispus was PC-Cd-BP consisting of isopeptides.