• Title/Summary/Keyword: MALDI-TOF/MS

Search Result 280, Processing Time 0.033 seconds

Changing Proteins in Granulosa Cells during Follicular Development in Pig (돼지 난포 발달 시 과립막 세포에서 발현되는 단백질의 변화)

  • Chae, In-Soon;Jang, Dong-Min;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.183-187
    • /
    • 2009
  • This study analyzed change of proteins in granulosa cells during the porcine follicuar development by proteomics techniques. Granulosa cells of the follicles, of which the diameter is $2{\sim}4\;mm$ and $6{\sim}10\;mm$, were collected from ovary of slaughtered pig that each follicle of diameter $1{\sim}4\;mm$ and $6{\sim}10\;mm$. We extracted glanulosa cell proteins by M-PER Mammalian Protein Extraction Reagent. Proteins were refined by clean-up kit and quantified by Bradford method until total protein was $200{\mu}l$. Immobilized pH gradient(IPG) strip used 18 cm, $3{\sim}10\;NL$. SDS-PAGE used 10% acrylamide gel. After silver staining, Melanie 7 and naked eye test were used for spot analyzation. Increasing proteins in glanulosa cell of $6{\sim}10\;mm$ follicle were 7 spots. This spots were analyzed by MALDI-TOF MS and searched on NCBInr. In results, 7 spots were similar to zinc/ling finger protein 3 precursor (RING finger protein 203), angiomotin, heat shock 60 kDa protein 1 (chaperonin) isoform 1 (HSP60), similar to transducin-like enhancer protein 1 (TLE 1), SH3 and PX domains 2A (SH3PXD2A). Those proteins were related with transfer between cells. Increase of proteins has an effect on follicular development.

Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves (초기 염류 스트레스 반응 인삼 잎 단백질체 분석)

  • Kim, So Wun;Min, Chul Woo;Gupta, Ravi;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.

A Sensitive Method for Identification of N-Glycosylation Sites and the Structures of N-Glycans Using Nano-LC-MS/MS (나노 액체크로마토그래피-텐덤 질량분석기를 이용하여 N-당질화 위치 및 N-당사슬 구조 규명을 위한 방법)

  • Cho, Young-Eun;Kim, Sook-Kyung;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.250-257
    • /
    • 2013
  • Biosimilars are important drugs in medicine and contain many glycosylated proteins. Thorough analysis of the glycosylated protein is a prerequisite for evaluation of biosimilar glycan drugs. A method to assess the diversity of N-glycosylation sites and N-glycans from biosimilar glycan drugs has been developed using two separate methods, LC-MS/MS and MALDI-TOF MS, respectively. Development of sensitive, accurate, and efficient methods for evaluation of glycoproteins is still needed. In this study, analysis of both N-glycosylation sites and N-glycans of glycoprotein was performed using the same LC-MS/MS with two different nano-LC columns, nano-C18 and nano-porous graphitized carbon (nano-PGC) columns. N-glycosylated proteins, including RNAse B (one N-glycosylation site), Fetuin (three sites), and ${\alpha}$-1 acid glycoprotein (four sites), were used, and small amounts of each protein were used for identification of N-glycosylation sites. In addition, high mannose N-glycans (one type of typical glycan structure), Mannose 5 and 9, eluted from RNAse B, were successfully identified using nano-PGC-LC MS/MS analysis, and the abundance of each glycan from the glycoprotein was calculated. This study demonstrated an accurate and efficient method for determination of N-glycosylation sites and N-glycans of glycoproteins based on high sensitive LC-MS/MS using two different nano-columns; this method could be applied for evaluation of the quality of various biosimilar drugs containing N-glycosylation groups.

Quantitation of CP4 5-Enolpyruvylshikimate-3-Phosphate Synthase in Soybean by Two-Dimensional Gel Electrophoresis

  • KIM YEON-HEE;CHOI SEUNG JUN;LEE HYUN-AH;MOON TAE WHA
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.25-31
    • /
    • 2006
  • Changes of CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) in the glyphosate-tolerant Roundup Ready soybean were examined using purified CP4 EPSPS produced in cloned Escherichia coli as a control. CP4 EPSPS in genetically modified soybean was detected by twodimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) with databases. CP4 EPSPS in soybean products was resolved on 2-DE by first isoelectric focusing (IEF) based on its characteristic pI of 5.1, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) based on its molecular mass of 47.5 kDa. We quantified various percentages of soybean CP4 EPSPS. The quantitative analysis was performed using a 2D software program on artificial gels with spots varying in Gaussian volumes. These results suggested that 2-DE image analysis could be used for quantitative detection of GM soybean, unlike Western blotting.

Comparative Proteome Analysis of Cyanidin 3-O-glucoside Treated Helicobacter pylori

  • Kim, Sa-Hyun;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.233-240
    • /
    • 2015
  • Some virulence proteins of Helicobacter pylori, such as vacuolating cytotoxic protein A (VacA) and cytotoxin-associated gene protein A (CagA) have been reported to be causative agents of various gastric diseases including chronic gastritis, gastric ulcer or gastric adenocarcinoma. The expression level of these virulence proteins can be regulated when H. pylori is exposed to the antibacterial agent, cyanidin 3-O-glucoside (C3G) as previously reported. In this study, we analyzed the quantitative change of various virulence proteins including CagA and VacA by C3G treatment. We used 2-dimensional electrophoresis (2-DE) to analyze the quantitative change of representative ten proteome components of H. pylori 60190 ($VacA^+/CagA^+$; standard strain of Eastern type). After 2-DE analysis, spot intensities were analyzed using ImageMaster$^{TM}$ 2-DE Platinum software then each spot was identified using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) or peptide sequencing using Finnigan LCQ ion trap mass spectrometer (LC-MS/MS). Next, we selected major virulence proteins of H. pylori among quantitatively meaningful ten spots and confirmed the 2-DE results by Western blot analysis. These results suggest that cyanidin 3-O-glucoside can modulate a variety of H. pylori pathogenic determinants.

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin;Kim, Jisu;Choi, Inseong;Lee, Jeongwook;Yeo, Woon-Seok
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.349-356
    • /
    • 2020
  • Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

The Effect of Protein Expression of Streptococcus pneumoniae by Blood

  • Bae, Song-Mee;Yeon, Sun-Mi;Kim, Tong-Soo;Lee, Kwang-Jun
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.703-708
    • /
    • 2006
  • During infection, the common respiratory tract pathogen Streptococcus pneumoniae encounters several environmental conditions, such as upper respiratory tract, lung tissue, and blood stream, etc. In this study, we examined the effects of blood on S. pneumoniae protein expression using a combination of highly sensitive 2-dimensional electrophoresis (DE) and MALDI-TOF MS and/or LC/ESI-MS/MS. A comparison of expression profiles between the growth in THY medium and THY supplemented with blood allowed us to identify 7 spots, which increased or decreased two times or more compared with the control group: tyrosyl-tRNA synthetase, lactate oxidase, glutamyl-aminopeptidase, L-lactate dehydrogenase, cysteine synthase, ribose-phosphate pyrophosphokinase, and orotate phosphoribosyltransferase. This global approach can provide a better understanding of S. pneumoniae adaptation to its human host and a clue for its pathogenicity.

Supramolecular Micelle from Amphiphilic Mn(III)-porphyrin Derivatives as a Potential MRI Contrast Agent

  • Choi, Kwang-Mo;Lee, Do-Hyung;Jang, Woo-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.639-644
    • /
    • 2010
  • Amphiphilic porphyrin derivatives have been synthesized and characterized by $^1H$ NMR and MALDI-TOF-MS. All porphyrin derivatives showed very high solubility to aqueous medium as well as hydrophobic organic solvent. The UV-vis absorption of the porphyrin derivatives showed significant broadness and decrease of maximum intensity of absorption in aqueous solution. SEM experiment showed the formation of spherical micellar structure. The $T_1$ relaxation time of aqueous medium was drastically decreased in the presence of Mn(III)-porphyrin derivative, indicating that the supramolecular micelle has strong possibility to use as a $T_1$ contrast agent.

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • Yun, Sang-Seon;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF