• Title/Summary/Keyword: MAC Forwarding

Search Result 26, Processing Time 0.022 seconds

A Delay Efficient and Bursty Traffics Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 지연과 버스티 트래픽에 적합한 MAC 프로토콜)

  • Kim, Hye Yun;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.254-260
    • /
    • 2017
  • Data packets from sensor nodes scattered over measuring fields are generally forwarding to the sink node, which may be connected to the wired networks, in a wireless sensor network. So many data packets are gathered near the sink node, resulting in significant data packet collisions and severe transmission latency. In an event detection application such as object tracking and military, bursty data is generated when an event occurs. So many data packet should be transmitted in a limited time to the sink node. In this paper, we present a delay efficient and bursty traffic friendly MAC protocol called DEBF-MAC protocol for wireless sensor networks. The DEBF-MAC uses a slot-reserved mechanism and sleep period control method to send multiple data packets efficiently in an operational cycle time. Our simulation results show that DEBF-MAC outperforms DW-MAC and SR-MAC in terms of energy consumption and transmission delay.

Secure Data Forwarding based on Source Routing in Mobile Ad Hoc Networks (소스 라우팅 기반의 이동 Ad-hoc 네트워크에서 안전한 데이터 전송 방법)

  • Roh, Hyo-Sun;Jung, Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1188-1193
    • /
    • 2007
  • This paper proposes a secure data forwarding scheme on source routing-based ad-hoc networks. The scheme uses two hash-key chains generated from a trusted third party to generate Message Authentication Codes for data integrity The selected MAC keys are delivered to the ad-hoc node using a pre-shared secret between the trusted third party and a node. The proposed scheme does not require the PKI, or the provisioning of the pre-shared secrets among the ad-hoc nodes.

A Simulation of Bridge using the Spanning Tree Protocol (스패닝 트리 프로토콜을 이용한 브릿지 시뮬레이션)

  • Lee, Sook-Young;Lee, Eun-Wha;Lee, Mee-Jeong;Chae, Ki-Joon;Choi, Kil-Young;Kang, Hun
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.45-57
    • /
    • 1997
  • MAC (media access control) bridge is used to interconnect separate LANs and to relay frames between the BLANs (bridged LANs). Bridge architecture consists of MAC entity, MAC relay entity and bridge protocol entity protocol entity and performs learning, filtering and forwarding functions using filtering database. In this paper, we simulate these functions of bridge and the STP (spanning tree protocol). The STP derives an active topology from an arbitrarily connected BLAN. Our simulation model assumes a BLAN consisted of three bridge forming a closed loop. In order to remove the loop, each bridge process exchanges configruation BPDU (bridge protocol data unit0 with other bridge processes connected to the bridge itself. To simulate the communication between bridges, we implement the IPC (inter-process communication) server using message queues. Our simulation results show that the assumed BLAN contains no closed loop and then there is no alternative route and no unnecessary traffic.

  • PDF

A Survey on Qualitative Analysis of Directional VANET MAC Protocols

  • Kim, Bongjae;Cho, Kwangsu;Nam, Choonsung
    • International Journal of Contents
    • /
    • v.10 no.2
    • /
    • pp.9-17
    • /
    • 2014
  • Since vehicles' trajectories are so complex and dense traffic changes in nature frequently, the VANET (Vehicles Ad-hoc Network), using Omni-directional Antenna, has many channel collisions (or overlapping) on Data Link phrases (MAC layers). It is not easy to keep a good seamless communication status for VANET because of its unpredictable network environment. Among VANET research, Directional Antenna have been proposed as one of the most common systematical solutions to reduce (or to mitigate) this miss-communication problems by narrowing communicational ranges and making use of its customized error-detection process. However, even though Directional Antennas help VANET keep good seamless communication, many VANET researchers have reported that Directional VANET still has miss-communicational problems - this has lead to problems like 'Directional Hidden Terminal Problem', 'Deafness', 'Un-accuracy Lobe Scopes' and 'High Deployment Cost' being reported in various papers. To establish well-organized design assessments for a good Directional VANET MAC protocol to overcome these problems, we rearranged and grouped current Directional VANET' qualitative criteria from several current survey papers using these categories- 'Directional Discovery', 'Directional Forwarding' and 'Directional Handover'. In addition, based on the results of the following analysis, we show the essential design concerns that need to be looked at in order to develop a well-designed Directional-VANET MAC protocol.

Vehicle-to-Vehicle Broadcast Protocols Based on Wireless Multi-hop Communication (무선 멀티 홉 통신 기반의 차량간 브로드캐스트 프로토콜)

  • Han, Yong-Hyun;Lee, Hyuk-Joon;Choi, Yong-Hoon;Chung, Young-Uk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.53-64
    • /
    • 2009
  • Inter-vehicular communication that propagates information without infrastructures has drawn a lot of interest. However, it is difficult to apply conventional ad-hoc routing protocols directly in inter-vehicular communication due to frequent changes in the network topology caused by high mobility of the vehicles. MMFP(Multi-hop MAC Forwarding) is a unicast forwarding protocol that transport packets based on the reachability information instead of path selection or position information. However, delivering public safety messages informing road conditions such as collision, obstacles and fog through inter-vehicular communication requires broadcast rather than unicast since these messages contain information valuable to most drivers within a close proximity. Flooding is one of the simplest methods for multi-hop broadcast, but it suffers from reduced packet delivery-ratio and high transmission delay due to an excessive number of duplicated packets. This paper presents two multi-hop broadcast protocols for inter-vehicular communication that extend the MMFP. UMHB(Unreliable Multi-Hop Broadcast) mitigates the duplicated packets of MMFP by limiting the number of nodes to rebroadcast packets. UMHB, however, still suffers from low delivery ratio. RMHB(Reliable Multi-Hop Broadcast) uses acknowledgement and retransmission in order to improve the reliability of UMHB at the cost of increase in transmission delay, which we show through simulation is within an acceptable range for collision avoidance application.

  • PDF

Method to Limit The Spread of Data in Wireless Content-Centric Network (무선 Content-Centric Network에서 Data 확산 제한 방법)

  • Park, Chan-Min;Kim, Byung-Seo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Since Devices such labtop, tablet, smartphone have been developed, a lots of huge data that can be classified as content is flooded in the network. According to changing Internet usage, Content-Centric Network(CCN) what is new concept of Internet Architecture is appeared. Initially, CCN is studied on wired network. but recently, CCN is also studied on wireless network. Since a characteristic of wireless environment is different from a characteristic of wired environment, There are issues in wireless CCN. In this paper, we discuss improvement method of Data spread issue on wireless CCN. The proposed scheme of this paper use MAC Address of nodes when Interest and Data Packet are forwarded. As using the proposed scheme, we reduce the spread of Data and offer priority of forwarding to nodes of shortest path, reduce delay by modifying retransmission waiting time.

An Efficient Transport Protocol for Ad Hoc Networks: An End-to-End Freeze TCP with Timestamps

  • Cho, Sung-Rae;Sirisena, Harsha;Pawlikowski, Krzysztof
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.376-386
    • /
    • 2004
  • In ad hoc networks, loss-based congestion window progression by the traditional means of duplicate ACKs and timeouts causes high network buffer utilization due to large bursts of data, thereby degrading network bandwidth utilization. Moreover, network-oriented feedbacks to handle route disconnection events may impair packet forwarding capability by adding to MAC layer congestion and also dissipate considerable network resources at reluctant intermediate nodes. Here, we propose a new TCP scheme that does not require the participation of intermediate nodes. It is a purely end-to-end scheme using TCP timestamps to deduce link conditions. It also eliminates spurious reductions of the transmission window in cases of timeouts and fast retransmits. The scheme incorporates a receiver-oriented rate controller (rater), and a congestion window delimiter for the 802.11 MAC protocol. In addition, the transient nature of medium availability due to medium contention during the connection time is addressed by a freezing timer (freezer) at the receiver, which freezes the sender whenever heavy contention is perceived. Finally, the sender-end is modified to comply with the receiver-end enhancements, as an optional deployment. Simulation studies show that our modification of TCP for ad hoc networks offers outstanding performance in terms of goodput, as well as throughput.

A Joint Topology Discovery and Routing Protocol for Self-Organizing Hierarchical Ad Hoc Networks (자율구성 계층구조 애드혹 네트워크를 위한 상호 연동방식의 토폴로지 탐색 및 라우팅 프로토콜)

  • Yang Seomin;Lee Hyukjoon
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.905-916
    • /
    • 2004
  • Self-organizing hierarchical ad hoc network (SOHAN) is a new ad-hoc network architecture designed to improve the scalability properties of conventional 'flat' ad hoc networks. This network architecture consists of three tiers of ad-hoc nodes, i.e.. access points, forwarding nodes and mobile nodes. This paper presents a topology discovery and routing protocol for the self-organization of SOHAN. We propose a cross-layer path metric based on link quality and MAC delay which plays a key role in producing an optimal cluster-based hierarchical topology with high throughput capacity. The topology discovery protocol provides the basis for routing which takes place in layer 2.5 using MAC addresses. The routing protocol is based on AODV with appropriate modifications to take advantage of the hierarchical topology and interact with the discovery protocol. Simulation results are presented which show the improved performance as well as scalability properties of SOHAN in terms of through-put capacity, end-to-end delay, packet delivery ratio and control overhead.

A Multi-path QoS Routing Protocol for the OFDM-TDMA Mesh Networks (OFDM-TDMA 메쉬 네트워크를 위한 다중경로 QoS 라우팅 프로토콜)

  • Choi, Jungwook;Lee, Hyukjoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • A large amount of work has been done in the areas of routing, MAC, QoS, capacity, location service, cooperative communication, fault tolerance, mobility models and various applications of mesh networks thanks to their merits of cost-effective way of deployment and flexibility in extending wireline services. Although multi-path routing protocols have been proposed to be used to provide QoS and fault-tolerance, there has not been any significant results discussed that support both in the literature to our best knowledge as they are often required in military and public safety applications. In this paper, we present a novel routing protocol for a mesh network based on the OFDM-TDMA collision-free MAC that discovers and maintains multiple paths that allows retransmitting and forwarding packets that have been blocked due to a link failure using an alternative next-hop node such that the delay-capacity tradeoff is reduced and the reliability is enhanced. Simulation results show that the proposed protocol performs well in terms of both the QoS and delivery ratio.

A MAC Protocol for Efficient Burst Data Transmission in Multihop Wireless Sensor Networks (멀티홉 무선 센서 네트워크에서 버스트 데이타의 효율적인 전송을 위한 프로토콜에 관한 연구)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.192-206
    • /
    • 2008
  • Multihop is the main communication style for wireless sensor networks composed of tiny sensor nodes. Until now, most applications have treated the periodic small sized sensing data. Recently, the burst traffic with the transient and continuous nature is increasingly introduced due to the advent of wireless multimedia sensor networks. Therefore, the efficient communication protocol to support this trend is required. In this paper, we propose a novel PIGAB(Packet Interval Gap based on Adaptive Backoff) protocol to efficiently transmit the burst data in multihop wireless sensor networks. The contention-based PIGAB protocol consists of the PIG(Packet Interval Gap) control algorithm in the source node and the MF(MAC-level Forwarding) algorithm in the relay node. The PIGAB is on basis of the newly proposed AB(Adaptive Backoff), CAB(Collision Avoidance Backoff), and UB(Uniform Backoff). These innovative algorithms and schemes can achieve the performance of network by adjusting the gap of every packet interval, recognizing the packet transmission of the hidden node. Through the simulations and experiments, we identify that the proposed PIGAB protocol considerably has the stable throughput and low latency in transmitting the burst data in multihop wireless sensor networks.