• Title/Summary/Keyword: M-type 바륨 페라이트

Search Result 8, Processing Time 0.026 seconds

Microwave Absorbing Properties of M-type Barium Ferrites with BaTi0.5Co0.5Fe11O19 Composition in Ka-band Frequencies (BaTi0.5Co0.5Fe11O19 조성을 갖는 M형 바륨 페라이트의 Ka-밴드 전파흡수특성)

  • Kim, Yong-Jin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.203-208
    • /
    • 2009
  • Magnetic and Ka-band absorbing properties have been investigated in Ti-Co substituted M-type barium hexaferrites with $BaTi_{0.5}Co_{0.5}Fe_{11}O_{19}$ composition. The ferrite powders were prepared by conventional ceramic processing technique and used as absorbent fillers in ferrite-rubber composites. The magnetic properties were measured by vibrating sample magnetometer. The complex permeability and dielectric constant were measured by using the WR-28 rectangular waveguide and network analyzer in the frequency range 26.5~40 GHz. For the Ti-Co substituted M-hexaferrites, the ferromagnetic resonance is observed at Ka-band (29.4 GHz). The matching frequency and matching thickness are determined by using the solution map of impedance matching. A wide band microwave absorbance is predicted with controlled ferrite volume fraction and absorber thickness.

Effects of Metal Ions Mole Ratio, pH and Heat Treatment Condition on the Magnetic Properties and Formation of Co-precipitated M-type Barium Ferrite Powders (공침법으로 합성한 바륨 페라이트(BaM)의 형성과 자기적 성질에 미치는 금속이온 몰 비 및 pH와 열처리 조건의 영향)

  • Baek, In-Seung;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.209-215
    • /
    • 2009
  • M-type barium ferrite (BaFe12O19) powders were synthesized through the co-precipitation method. Starting material composition $Fe^{3+}:\;Ba^{2+}$ mole ratio was fixed as 8 and the relative amount of $Fe^{3+}$ and $Ba^{2+}$ was controlled. Structure and magnetic properties and powder morphology were investigated using XRD, SEM, VSM. Powder showing high coercivity and small magnetization was obtained at pH8 and $Fe_{3+}:\;Ba_{2+}$ of 12 : 1.5. Small magnetization value was originated from the existence of ${\alpha}-Fe_2O_3$. Single-phase Mtype barium ferrite were obtained regardless of the heat treatment condition and the amount of $Fe_{3+}\;and\;Ba_{2+}$ at pH$\approx$10. The largest value of magnetization (55.7 emu/g) under investigation were obtained when $Fe_{3+}:\;Ba_{2+}$ of 13.6 : 1.7 and furnace cooled powder in $O_2$. Particle size of powder was in the range of 50~200 nm.

Magnetic Properties and Structure of Co-precipitated Barium Ferrite (BaM) Powders (공침법으로 합성한 바륨 페라이트(BaM) 분말의 결정구조와 자기적 성질)

  • Baek, In-Seung;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.134-142
    • /
    • 2010
  • Barium ferrite ($BaFe_{12}O_{19}$) powders were synthesized by the co-precipitation method. $Fe^{3+}:Ba^{2+}$ mole ratio was fixed 8 and relative amount of $Fe^{3+}$ and $Ba^{2+}$ was controlled. The effects of the pH (= 8, 9, 10), calcination temperature and time on the morphology, structure and magnetic properties of the barium ferrite particles are characterized using XRD, FESEM, and VSM respectively. Coercivity and magnetization value of powders were changed with calcination temperature and time, relative amount of $Fe^{3+}$ and $Ba^{2+}$ and pH. Single-phase barium ferrite was obtained when pH value was 9 in the investigated range of $Fe^{3+}:Ba^{2+}$ relative amount and secondary phases were appeared at $Fe^{3+}:Ba^{2+}$ relative amount of 14.4 : 1.8. The largest value of magnetization (65.7 emu/g) was obtained when $Fe^{3+}:Ba^{2+}$ mole ratio was 12.8 : 1.6 and calcination temperature was $900^{\circ}C$ with air calcination atmosphere. The largest value of coercivity (5280 Oe) was obtained with $O_2$ calcination atmosphere.

Magnetic and Microwave Absorbing Properties of M-type Ba-ferrite($BaFe_{12-2X}Ti_XCo_XO_{19}$)with Planar Magnetic Anisortropy (면내 자기이방성을 갖는 M-type Ba-ferrite($BaFe_{12-2X}Ti_XCo_XO_{19}$)의 자기적특성 및 전파흡수특성)

  • 조한신;김성수
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.22-26
    • /
    • 1998
  • The purpose of this experimenL is to investigate the magnetic anisotropy and microwave absorbing properties in M-type Bat territe (${BaFe}_{12-2X}{A}_{X}{Me}_{X}{O}_{19}$), where $Fe_{3+}$ is substituted by $Ti_{4+}$ in A site and $Co_{2+}$ in Me site. The saturation magnetization (Ms) is linearly decreased with the substitution rate(x) and the coerciviLy (He) is rapidly decreased in accordance with the reduction in t the magnetocrystalline anisotropy For the specimen with x=0.8 and thickness of 2 mm, the reflection loss calculated from the n material constants is less than -10 dB (90% absorption) in the frequency range of 10~16 GHz. The absorption loss is pre이.ctcd t to be more than 20 dElern in the frequency range of 12-16 GHz. The results demonstrate that the Ti-Co substituted M-type Ba-ferrite can be effectively used as a microwave absorber at high frequency range.

  • PDF

Fabrication and Magnetic Properties of Ba Ferrite Powders by Sol-gel Process (졸겔법에 의한 Ba-ferrite분말의 제조 및 자기적 특성 연구)

  • An, Sung-Yong;Lee, Sang-Won;Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • M-type hexagonal BaFe$\sub$12/O$\sub$19/ ferrite powder was prepared by sol-gel process. The M-type hexagonal structure with ${\alpha}$ = 5.882 and c = 23.215 ${\AA}$ and its Curie temperature T$\sub$C/ was determined 780${\pm}$3 K. The isomer shifts of ,4f$_2$, 2a. 4f$_1$, 12k, and 2b were indicated 0.26, 0.24, 0.15, 0.25, and 0.24 mm/s, therefore, the valence states of the Fe ions were ferric (Fe$\^$3+/). By the law of approach to saturation (LAS), the effective anisotropy field H$\sub$A/ and crystalline anisotropy constant K$_1$ were estimated. The value of K$_1$ and H$\sub$A/ were K$_1$ = 2.5${\times}$10$\^6/erg/cm^3$ and H$\sub$A/ = 14 kOe, respectively.

Fabrication and Magnetic Properties of BaFe12-2xCoxTixO19 Powders (BaFe12-2xCoxTixO19 분말의 제조 및 자기특성 연구)

  • An, Sung-Yong;Shim, In-Bo;Kim, Chul-Sung;Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • M-type hexagonal BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$ (0$\leq$x$\leq$1.0) ferrite powders prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffraction (XRD), thermogravimetry (TG), differential thermal analysis (DIA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and Mossbauer spectroscopy. The result of XRD measurements show that the a and c lattice parameters increase with increasing x from $\alpha$=5.882 and c=23.215 $\AA$ for $\chi$=0.0, to $\alpha$=5.895 and c=23.295 $\AA$ for $\chi$=1.0. From the Mossbauer results, the $Co^{2+}$- $Ti^{4+}$ site occupancies have been affected the changes in the magnetization and in the coercivity. The Curie temperature linearly decreases with increasing $Co^{2+}$- $Ti^{4+}$ concentration x.