• Title/Summary/Keyword: M-H${\cdot}$${\cdot}$${\cdot}$H-C

Search Result 661, Processing Time 0.024 seconds

Fe-H…H-C Dihydrogen Bondings: Synthesis and Structure of trans-[FeH(NCSe)(dppe)2](dppe=Ph2 PCH2 CH2 PPh2 (Fe-H…H-C 이수소 결합: trans-[FeH(NCSe)(dppe)2](dppe=Ph2 PCH2 CH2 PPh2의 합성 및 구조)

  • Baek, Ji Yeong;Han, Won Seok;Lee, Sun Won
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • Reaction of $trans-[FeHCl(dppe)_2]$ (1) with KSeCN led to the formation of $trans-[FeH(NCSe)(dppe)_2](2).$ Compound 2 $·CH_2Cl_2$ was structurally characterized by X-ray diffraction, in which the hydride ligand appears to be involved in the dihydrogen bonding of the type M-H${\cdot}$${\cdot}$${\cdot}$H-C.

Benzene Biodegradation Using the Polyurethane Biofilter Immobilized with Stenotrophomonas maltophilia T3-c

  • Kwon, Heock-Hoi;Lee, Eun-Young;Cho, Kyung-Suk;Ryu, Hee-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • The benzene removal characteritics of the polyurethane (PU) biofilter immobilized with S. maltophilia T3-c, that could efficiently degrade benzene, was investigated. Maximum capacity to eliminate benzene was maintained at $100-110g{\cdot}m^-3{\cdot}h^-1$ when space velocity (SV) ranged from 100 to $300 h^-1$ -1/, however, it decreased sharply to $55 g{\cdot}m^-3{\cdot}h^-1^$ as SV increased to $400 h^-1$. The critical elimination capacities that guaranteed $90\%$ removal of inlet loading of the PU biofilter were determined to be 70,30, and $15 g{\cdot}m^-3{\cdot}h^-1$ at SV 100,200, and $300 h^-1$, respectively. Based on the result of a kinetic analysis of the PU biofilter, maximum benzene elimination velocity ($V_m$) was $125 g{\cdot}m^-3^\;of\;PU{\cdot}h^-1$ and saturation constant ($K_m$) was $0.22 g{\cdot}m^-3^$ of benzene ($65{\mu}{\cdot}I^-1$). This study suggests that the biofilter utilizing S. maltophilia T3-c and polyurethane is a very promising technology for effectively degrading benzene.

Organotitanium Chemistry (IV). The Molecular and Electronic Structure of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;and\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ (유기티탄 화학 (제4보). $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;및\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$의 분자 및 전자구조)

  • Lee Hoosung;Uh Young Sun;Sohn Youn Soo
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.92-97
    • /
    • 1975
  • The molecular and electronic structures of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;and\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ have been studied by employing cryoscopic and electronic spectroscopic methods. The cryoscopic data have shown that the dimeric tetraphenoxytitanium(Ⅳ) phenolate in solid undergoes complete dissociation into monomer in solution and also the chlorocomplex starts dissociation around the concentration of 8 m mole/l. Therefore, these two Ti-complexes are pentacoordinated in dilute solution and the local symmetry of the titanium ion in these complexes seems to be trigonalbipyramid. The electronic spectra of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH$ and $Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ each show two band, systems, one vibration-structural band characteristic of the aromatic ring in the near UV and another visible band at 26.8 kK, 29.6 kK, respectively, which are assigned as a ligand to metal charge transfer band corresponding to $^1A_1''{\to}^1E'\;or\;^1E''$ transition.

  • PDF

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Autumn Olive (Elaeognus umbellata) Seedlings (보리수나무 유식물의 생장과 질소고정 활성에 대한 환경요인의 영향)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.387-394
    • /
    • 1994
  • Effects of environmental factors of light, temperature, nitrogen sources and water stress were analyzed quantitatively on the nodule formation and nitrogen fixation activity of autumn olive plant (Elaeagnu$ umbellala Thunb.) during the seedling growth. Seedlings showed the maximum nitrogenase activity of $72.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ in the early nodulation stage. The relative growth rate and T/R ratio changed from $1.60%{\cdot}d^{-1}$ and 1.12 in the earlier stage to $3.75%{\cdot}d^{-1}$ and 2.31 in the later stage, respectively. light conditions of 20-25, 1015 and 4-6% resulted in decreases of 41, 54 and 71% of the nitrogenase activity, respectively. Nodules incubated in 15, 20, 25 and $30^{\circ}C$ showed the activities of 5.4, 24.7, 51.6 and $58.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ respectively. Pretreatment with low temperature ($15^{\circ}C$) followed incubation at $30^{\circ}C$ attained higher nitrogenase activity ($66.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$) than that with higher temperature ($35^{\circ}C$). The oxygen pressure above 16 kPa is necessary for saturation of the nodule activity, but the activity was inhibited severely by physical impact such as the exision or isolation of nodules from the root. The relative activities of early nodules grown in pH 5.5, 6.5 and 8.0 were 89, 100 and 40% and those grown in 1 and 3 mM of $NO_3\;and\;NH_4$ were 6, 1 and 68, 50%, respectively. Watering levels of 20, 50 and 100 mL during the seedling growth resulted in 35, 120 and 8 mg of nodule formation and 33.6, 58.4 and $8.4\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ of the nitrogenase activity, respectively. Water stress with 86% decrease of soil water content caused temporary wilting point of leaf and a complete disappearance of nitrogenase activity of nodules, though the water content and transpiration rate in plant were reduced to 90 and 53%, respectively.tively.

  • PDF

Regeneration and Maturation Induction for the Free-living Gametophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta) (대형갈조류 감태(Ecklonia cava Kjellman) 유리배우체의 재생 및 성숙 유도)

  • Wi, Mi-Young;Hwang, Eun-Kyoung;Kim, Seong-Cheol;Hwang, Mi-Sook;Baek, Jae-Min;Park, Chan-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.5
    • /
    • pp.381-388
    • /
    • 2008
  • Induction of regeneration and maturation for the free-living gametophytes of Ecklonia cava Kjellman was conducted under various temperature, irradiance and photoperiod conditions. Culture conditions for female or male gametophyte fragments were 4 temperature (5, 10, 15 and $20^{\circ}C$), 4 irradiance (5, 10, 20 and $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and 3 photoperiod (14:10, 12:12 and 10:14 h L:D). Female and male gametophyte fragments were maintained in active regeneration without reaching sexual maturity under $5{\sim}10^{\circ}C$, $5{\sim}10{\mu}mol{\cdot}m-2{\cdot}s-1$, 12:12h or 10:14h (L:D) and $15-20^{\circ}C$, $20-40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 14:10h (L:D), respectively. Sexual maturation of female and male gametophytes facilitated under $15^{\circ}C$, $20-40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 14:10h (L:D) and $5-10^{\circ}C$, $5-10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 10:14h (L:D), respectively. These results provide basic informations to control the regeneration or maturation of the free-living gametophytes for artificial seed production of E. cava.

Studies on the Metal Complexes with the Tetradentate Schiff Base Ligand (네자리 Schiff Base 리간드의 금속착물에 관한 연구)

  • Chjo Ki Hyung;Oh Sang-Oh;Kim Chan-ho
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.194-201
    • /
    • 1974
  • The tetradentate schiff base ligand, N,N'-bis(salicylaldehyde)-m-phenylenediimine has been prepared from salicylaldehyde and m-phenylenediamine by Duff-reaction. The schiff base ligand has been reacted with Cu(II), Ni(II), Co(II), and Zn(II) to form new complexes; Cu(II)$[C_{20}H_{14}O_2N_2]{\cdot}2H_2O, Ni(II)[C_{20}H_{14}O_2N_2]{\cdot}2H_2O, Co(III)[C_{20}H_{14}O_2N_2]{\cdot}2H_2O and Zn(II)2[C_{20}H_{14}O_2N_2]{\cdot}4H_2O$. It seems to be that the Cu(II), Ni(II) and Co(II) complexes have hexacoordinated configuration with the schiff base and two molecules of water, while Zn(II) complex has tetracoordinated configuration with the schiff base and four molecules of water. The mole ratio of tetradentate schiff base ligand to Cu(II), Ni(II) and Co(II) are 1:1 but to Zn(II) is 1:2. These complexes have been identified by visible spectra, infrared spectra, T.G.A. and elemental analysis.

  • PDF

Effect of Temperature on Removal of Ammonia in the Ceramic Biofilter Inoculated with Earthworm Casts (지렁이 분변토를 접종한 세라믹 바이오필터의 암모니아 제거에 미치는 온도의 영향)

  • Cho, Kyung-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • Removal of ammonia using the porous ceramic biofilter inoculated with earthworm casts was characterized. By assuming a plug air flow in the biofilter and applying the Michaelis-Menten equation, the maximum removal rate of $NH_3$ was $280.7g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.0g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $30^{\circ}C$. $NH_3$ removal rate was increased as temperature increases from $15^{\circ}C$ to $35^{\circ}C$. The maximum removal rate was $285.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.8g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $35^{\circ}C$. At $15^{\circ}C$, the $NH_3$ removal rate was $122.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($8.1g-N{\cdot}kg^{-1}{\cdot}d^{-1}$). When 210 ppm $NH_3$ was supplied to the biofilter at space velocity of $220h^{-1}$, the removal efficiency of $NH_3$ at 15, 25, 30 and $35^{\circ}C$ was 80, 90, 95, and 96%, respectively. The removal rate of the ceramic biofilter was 3 to 15 times higher than other biofilters comparing the removal efficiency of $NH_3$ per unit volume of carrier. This result indicates that earthworm casts and porous ceramics are very good inoculum source and carrier, respectively, for the $NH_3$-degrading biofilter.

  • PDF

Improvements of Protoplast Fusion Efficiency between Petunia hybrida and Nicotiana sandarae (Petunia hybrida와 Nicotiana sanderaer간(間) 원형질체(原形質體) 융합효율증진(融合效率增進))

  • Chung, Jae Dong;Roh, Young Hee;Jee, Sun Ok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.147-155
    • /
    • 1992
  • This study was conducted to get basic information for factors affecting protoplast fusion between Petunia hybrida 'Titan red' and Nicotiana sanderae. The experiments such as fusogen, time of PEG treatment, temperature at fusion, $CaCl_2{\cdot}2H_2O$ concentration in fusion solution, and $CaCl_2{\cdot}2H_2O$ concentration and pH in eluting solution were carried out to increase the fusion efficiency. The results obtained were as follows; Fusion between P. hybrida and N. sanderae was accelerated when the mixture of the protoplasts was treated with 30% PEG 6,000 solution containing 5.5 mM $CaCl_2{\cdot}2H_2O$ for 10 minutes at $25^{\circ}C$, and subsequently eluted with a eluting solution containing 50 mM $CaCl_2{\cdot}2H_2O$ adjusted to pH 9.0.

  • PDF

Measurement of Ammonia Emission Rate and Environmental Parameters from Growing-Finishing and Farrowing House during Hot Season (하절기 육성$\cdot$비육돈사와 분만돈사의 암모니아 발생특성 및 환경변화)

  • Lee S. H;Cho H. K.;Choi K. J.;Oh K. Y.;Yu B. K.;Lee I. B.;Kim K. W.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This study was carried out to measure the environmental related parameters from two types of swine houses. Indoor temperature, relative humidity, carbon dioxide level, ammonia concentration and emission were measures every 2 minutes from each house with portable monitoring units. Carbon dioxide concentration balance was used to estimate the ventilation rates of the different houses. Daily ammonia concentrations in the growing-finishing and farrowing houses ranged from 2 to 17 ppm and 6 to 15 ppm respectively. The daily ammonia emission rate from the manure averaged 4.37 g/h$\cdot$500 kg from growing-finishing house and 4.82 g/h$\cdot$500 kg from the farrowing house. The above findings proved that summer season was associated with higher ammonia emission rates due to higher ventilation rate and ambient air temperature.

  • PDF

Reduction and Equilibrium of Vanadium-Diethylenetriamine Pentaacetates at Mercury Electrode in Aqueous Solution (수용액중의 수은전극에서 바나듐-디에틸렌트리아민 펜타아세트산염의 환원 및 평형연구)

  • Ki-Suk Jung;Se Chul Sohn;Young Kyung Ha;Tae Yoon Eom;Sock Sung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.

  • PDF