• 제목/요약/키워드: M/PH/1 queue

검색결과 6건 처리시간 0.018초

Approximation of M/G/c Retrial Queue with M/PH/c Retrial Queue

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.169-175
    • /
    • 2012
  • The sensitivity of the performance measures such as the mean and the standard deviation of the queue length and the blocking probability with respect to the moments of the service time are numerically investigated. The service time distribution is fitted with phase type(PH) distribution by matching the first three moments of service time and the M/G/c retrial queue is approximated by the M/PH/c retrial queue. Approximations are compared with the simulation results.

TWO-CLASS M/PH,G/1 QUEUE WITH IMPATIENCE OF HIGH-PRIORITY CUSTOMERS

  • Kim, Jeongsim
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.749-757
    • /
    • 2012
  • We consider the M/PH,G/1 queue with two classes of customers in which class-1 customers have deterministic impatience time and have preemptive priority over class-2 customers who are assumed to be infinitely patient. The service times of class-1 and class-2 customers have a phase-type distribution and a general distribution, respectively. We obtain performance measures of class-2 customers such as the queue length distribution, the waiting time distribution and the sojourn time distribution, by analyzing the busy period of class-1 customers. We also compute the moments of the queue length and the waiting and sojourn times.

M/PH/1 QUEUE WITH DETERMINISTIC IMPATIENCE TIME

  • Kim, Jerim;Kim, Jeongsim
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.383-396
    • /
    • 2013
  • We consider an M/PH/1 queue with deterministic impatience time. An exact analytical expression for the stationary distribution of the workload is derived. By modifying the workload process and using Markovian structure of the phase-type distribution for service times, we are able to construct a new Markov process. The stationary distribution of the new Markov process allows us to find the stationary distribution of the workload. By using the stationary distribution of the workload, we obtain performance measures such as the loss probability, the waiting time distribution and the queue size distribution.

LOSS PROBABILITY IN THE PH/M/1/K QUEUE

  • Kim, Jeong-Sim
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.529-534
    • /
    • 2007
  • We obtain an explicit expression of the loss probability for the PR/M/1/K queue when the offered load is strictly less than one.

TRANSIENT DISTRIBUTIONS OF LEVEL DEPENDENT QUASI-BIRTH-DEATH PROCESSES WITH LINEAR TRANSITION RATES

  • Shin, Yang-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.83-100
    • /
    • 2000
  • Many queueing systems such as M/M/s/K retrial queue with impatient customers, MAP/PH/1 retrial queue, retrial queue with two types of customers and MAP/M/$\infty$ queue can be modeled by a level dependent quasi-birth-death(LDQBD) process with linear transition rates of the form ${\lambda}_k$={\alpga}{+}{\beta}k$ at each level $\kappa$. The purpose of this paper is to propose an algorithm to find transient distributions for LDQBD processes with linear transition rates based on the adaptive uniformization technique introduced by van Moorsel and Sanders [11]. We apply the algorithm to some retrial queues and present numerical results.

ANALYSIS OF M/M/c RETRIAL QUEUE WITH THRESHOLDS, PH DISTRIBUTION OF RETRIAL TIMES AND UNRELIABLE SERVERS

  • CHAKRAVARTHY, SRINIVAS R.;OZKAR, SERIFE;SHRUTI, SHRUTI
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.173-196
    • /
    • 2021
  • This paper treats a retrial queue with phase type retrial times and a threshold type-policy, where each server is subject to breakdowns and repairs. Upon a server failure, the customer whose service gets interrupted will be handed over to another available server, if any; otherwise, the customer may opt to join the retrial orbit or depart from the system according to a Bernoulli trial. We analyze such a multi-server retrial queue using the recently introduced threshold-based retrial times for orbiting customers. Applying the matrix-analytic method, we carry out the steady-state analysis and report a few illustrative numerical examples.