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M/PH/1 QUEUE WITH DETERMINISTIC IMPATIENCE

TIME

Jerim Kim and Jeongsim Kim

Abstract. We consider an M/PH/1 queue with deterministic impa-
tience time. An exact analytical expression for the stationary distribution
of the workload is derived. By modifying the workload process and using
Markovian structure of the phase-type distribution for service times, we
are able to construct a new Markov process. The stationary distribution
of the new Markov process allows us to find the stationary distribution
of the workload. By using the stationary distribution of the workload,
we obtain performance measures such as the loss probability, the waiting
time distribution and the queue size distribution.

1. Introduction

In many service systems, customers wait for service for a limited time only
and leave the system if not served during that time. Such customers with lim-
ited waiting time are usually referred to as impatient customers. Impatience
phenomena are often encountered in real-time communication systems, inven-
tory systems with storage of perishable goods, telecommunication networks,
call centers, etc.

Systems with limited waiting times can be classified as follows:

- The limitation acts only on waiting time or on sojourn time.
- The customer can calculate his prospective waiting time at the arrival
epoch and balks if this exceeds his patience or he joins the queue re-
gardless, leaving the system if and when his patience expires.

Combining these two classifications, Baccelli et al. [3] described the following
four queueing systems with impatient customers:

(a) limitation on sojourn time (impatience until the end of service), aware
customers: The entering customer leaves immediately if he knows that
his total sojourn time is beyond his patience.
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(b) limitation on sojourn time, unaware customers: This is the case if
customers do not know anything about the system and are unaware of
the beginning of the service.

(c) limitation on waiting time (impatience until the beginning of service),
aware customers: The same as (a) above with the impatience acting
only on waiting time.

(d) limitation on waiting time, unaware customers: The same as (b) above
with the impatience acting only on waiting time.

This paper deals with the case (d). There has been a large amount of
literature on queues with impatient customers. We use the notationG/G/c+G:
the first three symbols have the same meaning as in Kendall’s notation and the
last one specifies the impatience law. Barrer [5] and [6] analyzed the M/M/1+
D and M/M/c + D queues with deterministic patience times and obtained
equilibrium queue size distributions. Gnedenko and Kovalenko [12] (pp. 34
and 47) pointed out that the results of Barrer [6] are perfectly correct, but his
derivation is not faultless, and then gave the correct derivation for the same
models (pp. 33–47). Jurkevic [13] and [14] analyzed the M/M/c queue where
impatient time is the minimum of a constant and an exponentially distributed
time, and the M/M/c + G queue with general impatience time distribution.
Independently, the M/M/c+G queue was analyzed by Baccelli and Hebuterne
[4]. Boxma and de Waal [7] developed several approximations for the overflow
probability in the M/M/c+G queue. The derivation of performance measures
for M/M/c+G queue continued in Brandt and Brandt [8, 9]. They considered
the more general M(n)/M(n)/c+G queue where arrival and service rates are
allowed to depend on the number n of calls in the system. For the M(n)/M/c+
G queue, see Movaghar [16].

de Kok and Tijms [15] and Xiong et al. [21] studied the M/G/1+D queue.
de Kok and Tijms [15] obtained an expression for the distribution function of
the workload in terms of the workload in the modified system. They obtained
the exact expressions for the loss probability and the mean waiting time in
the M/M/1 +D queue. Xiong et al. [21] set up an integral equation for the
distribution of the workload using level crossing analysis. An analytical solution
for this equation was given only for M/H2/1 + D queue. de Kok and Tijms
[15] and Xiong et al. [21] presented approximations for the loss probability and
the mean waiting time in the M/G/1 +D queue.

Finch [11] obtained the actual waiting time distribution for the G/M/1+D
queue. Bae and Kim [2] derived the stationary distribution of the workload
in the G/M/1 +D queue using level crossing analysis. Daley [10] studied the
GI/G/1 + G queue by setting up an integral equation for the waiting time
distribution and focused on M/G/1 +D and M/G/1 +M (where +M refers
to the exponential impatience time) queues. The GI/G/1 +G queue was also
studied by Baccelli et al. [3] and Stanford [18, 19], and results for actual and
virtual waiting times were obtained.
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This paper is inspired by de Kok and Tijms [15] and Xiong et al. [21] who
studied the M/G/1+D queue. As mentioned above, de Kok and Tijms [15] and
Xiong et al. [21] obtained the exact expressions for performance measures only
for exponential and two-stage hyper-exponential service times. Therefore, we
want to find the exact expressions for performance measures for a more general
service time distribution than exponential and hyper-exponential distributions.
This leads us to consider a phase-type distribution for service times. Note
that every distribution can be approximated arbitrarily closely by a phase-type
distribution.

In this paper we consider an M/PH/1 queue with deterministic impatience
time in which customers have phase-type distributed service times. The pur-
pose of this paper is to obtain the exact analytical expressions for performance
measures. First we obtain an exact analytical expression for the stationary dis-
tribution of the workload. This is a generalization of the result of Xiong et al.
[21] as mentioned above. To get the stationary distribution of the workload,
we construct a new Markov process by modifying the workload process and
using Markovian structure of the phase-type distribution for service times, and
then obtain the stationary distribution of the Markov process. By using the
stationary distribution of the workload, we derive the exact analytical expres-
sions for performance measures such as the loss probability, the waiting time
distribution and the queue size distribution.

2. Analysis of the workload process

We consider the M/PH/1 queue with deterministic impatience time τ in
which customers arrive according to a Poisson process with intensity λ. The
service time has a phase-type distribution with representation (α, T ) of order
m and mean µ−1. The offered load ρ is defined as ρ ≡ λ

µ .

We denote by V (t) the workload (unfinished work, or virtual waiting time)
at time t. Figure 1 shows a sample path of {V (t) : t ≥ 0}. Note that an arriv-
ing customer who finds that the workload exceeds τ is lost, when his attained
waiting time becomes τ . Clearly {V (t) : t ≥ 0} is a Markov process. Further-
more, it is a regenerative process with returning points to 0 as regeneration
epochs. The mean of a regeneration cycle is finite since customers who arrive
when the workload is larger than τ will be lost; and the mean service time is
finite. In addition, the distribution of a regeneration cycle is nonlattice. Hence
the workload process {V (t) : t ≥ 0} has a limiting distribution, which is also
a stationary distribution, see Theorem 17 on p. 112 in [20]; Theorem 20 on p.
120 in [20]; and Theorem 1.2 on p. 170 in [1]. Suppose that {V (t) : t ≥ 0} is
in the steady state, i.e., {V (t) : t ≥ 0} is stationary. Let

P (x) ≡ P(V (t) ≤ x), x ∈ R.

Define

σ ≡ inf{t > 0 : V (t) = 0, V (u) 6= 0 for some u ∈ (0, t)},(1)
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ν ≡ E
(

σ|V (0) = 0
)

.(2)

Then, by Theorem 1.2 on p. 170 in [1], for every Borel subset B of R,

(3)

∫

B

dP (x) =
1

ν
E

(

∫ σ

0

1{V (t)∈B}dt | V (0) = 0
)

.

Specifically if B is a Lebesgue null set of (0,∞), then the right-hand side of
(3) is zero (see Figure 1). Hence

∫

B dP (x) = 0 for all Lebesgue null sets B of
(0,∞), which implies that P (x) is absolutely continuous in x on [0,∞). From
this we have the following lemma.

Lemma 1. There exists a density function p(x), x ≥ 0, such that

P (x)− P (0) =

∫ x

0

p(y) dy.

Define

p0 ≡ P (0) = P(V (t) = 0).

The remainder of this section is devoted to the derivation of p0 and p(x), x ≥ 0.

First, we introduce a new process {Ṽ (s) : s ≥ 0} by modifying {V (t) : t ≥ 0}.
We explain how to obtain this by illustrations with a sample path. Let 0 <
t1 < t2 < · · · be the arrival epochs of customers who will be served, see Figure
1. Let Sk, k = 1, 2, . . . be the required service time of the customer who arrives
at time tk. Let A(t) be the sum of service times for the customers who arrive
until time t and will be served, i.e.,

A(t) ≡
∑

tk≤t

Sk, t ≥ 0.

Figure 2 shows the plot of (t+A(t), V (t)). Now we obtain Figure 3 by adding

line segments with slope 1 to Figure 2. Let {Ṽ (s) : s ≥ 0} be the process
obtained in this way, as in Figure 3.

Let us describe the phase-type distribution for service times in detail. Con-
sider a continuous time Markov process with state space {1, . . . ,m,m+1} and
an infinitesimal generator of the form

(4)

[

T T 0

0⊤ 0

]

,

where T = (Tij)1≤i,j≤m is a nonsingularm×m matrix and T 0 = (T 0
1 , . . . , T

0
m)⊤

is an m-dimensional column vector satisfying T1 + T 0 = 0. Here and sub-
sequently, 0 and 1 are m-dimensional column vectors with all components
equal to zero and one, respectively. Let (α, 0) be the initial distribution of the
Markov process, where α = (α1, . . . , αm) with

∑m
i=1 αi = 1. Then the time

until absorption into the state m+1 in the Markov process has the phase-type
distribution with representation (α, T ). Without loss of generality, we may as-
sume that the representation (α, T ) is irreducible in the sense that the Markov
process with initial distribution (α, 0) and infinitesimal generator (4) has no re-
dundant states. Equivalently, the square matrix with nonnegative off-diagonal
entries, T 0α+ T is assumed to be irreducible.
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✲

✻V (t)

t

τ

✻t1 t2 t3 t4 t5 t6✻ ✻

t1, t2, . . .: arrival epochs of customers who will be served.

✻: arrival epochs of customers who will be lost.

Figure 1. A sample path of the workload {V (t) : t ≥ 0}.

✲

✻V (t)

t+A(t)

τ

t1 t1+S1t2+S1 t2+
2
∑

k=1

Sk t3+
2
∑

k=1

Skt3+
3
∑

k=1

Sk t4+
3
∑

k=1

Sk

Figure 2. Plot (t+A(t), V (t)).

✲

✻Ṽ (s)

s

τ

t1 t1+S1t2+S1 t2+
2
∑

k=1

Sk t3+
2
∑

k=1

Skt3+
3
∑

k=1

Sk t4+
3
∑

k=1

Sk

Figure 3. A sample path of {Ṽ (s) : s ≥ 0}.

Let {Jk(s) : s ≥ 0}, k = 1, 2, . . ., be independent Markov processes on
{1, 2, . . . ,m+1} with initial distribution (α, 0) and infinitesimal generator (4).
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The service times Sk, k = 1, 2, . . ., are obtained by

Sk = inf{s ≥ 0 : Jk(s) = m+ 1}.

Define

J̃(s) =







Jk(s− (tk +
∑k−1

l=1 Sl)) if tk +
∑k−1

l=1 Sl ≤ s < tk +
∑k

l=1 Sl

for some k = 1, 2, . . . ,
0 otherwise.

Then {(Ṽ (s), J̃(s)) : s ≥ 0} is a Markov process. Observe that the Markov

process {(Ṽ (s), J̃(s)) : s ≥ 0} is also a regenerative process with returning
points to (0, 0) as regeneration epochs. The mean of a regeneration cycle is
finite since customers who arrive when the workload is larger than τ will be
lost; and the mean service time is finite. In addition, the distribution of a
regeneration cycle is nonlattice. Hence the process {(Ṽ (s), J̃(s)) : s ≥ 0} has
a limiting distribution, which is also a stationary distribution, see Theorem
17 on p. 112 in [20]; Theorem 20 on p. 120 in [20]; and Theorem 1.2 on p.

170 in [1]. Suppose that {(Ṽ (s), J̃(s)) : s ≥ 0} is in the steady state, i.e.,

{(Ṽ (s), J̃(s)) : s ≥ 0} is stationary. We define

Fi(x) = P(Ṽ (s) ≤ x, J̃(s) = i), x ≥ 0, i = 0, 1, . . . ,m,

and
F (x) =

(

F1(x), F2(x), . . . , Fm(x)
)

.

We can express p0 and p(x) in terms of F0(0) and F0(x) as shown in the
following lemma.

Lemma 2. We have

(i) F0(0) > 0 and Fi(0) = 0 for i = 1, 2, . . . ,m;
(ii) F0(x) − F0(0) = F (x)1;

(iii) p0 = 2F0(0)
1+F0(0)

and
∫ x

0 p(y)dy = 2
1+F0(0)

(F0(x)− F0(0)).

Proof. We define

σ̃ = inf{s > 0 : (Ṽ (s), J̃(s)) = (0, 0), (Ṽ (u), J̃(u)) 6= (0, 0) for some u ∈ (0, s)},

ν̃ = E
(

σ̃|(Ṽ (0), J̃(0)) = (0, 0)
)

.

By Theorem 1.2 on page 170 in [1], we have

Fi(0) =
1

ν̃
E

(

∫ σ̃

0

1{(Ṽ (s),J̃(s))=(0,i)}ds|(Ṽ (0), J̃(0)) = (0, 0)

)

.

On {(Ṽ (0), J̃(0)) = (0, 0)}, it is observed that
∫ σ̃

0

1{(Ṽ (s),J̃(s))=(0,i)}ds = 0 if i = 1, . . . ,m,

∫ σ̃

0

1{(Ṽ (s),J̃(s))=(0,i)}ds > 0 if i = 0.
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Hence Fi(0) > 0 if and only if i = 0, and so (i) is proved.
Next we prove (ii). We observe that

∫ σ̃

0

1{Ṽ (s)∈(0,x],J̃(s)=0}ds

=

∫ σ̃

0

1{Ṽ (s)∈(0,x],1≤J̃(s)≤m}ds on {(Ṽ (0), J̃(0)) = (0, 0)}.(5)

By Theorem 1.2 on page 170 in [1], we have

F0(x) − F0(0) =
1

ν̃
E

(

∫ σ̃

0

1{Ṽ (s)∈(0,x],J̃(s)=0}ds|(Ṽ (0), J̃(0)) = (0, 0)

)

,

F (x)1 =
1

ν̃
E

(

∫ σ̃

0

1{Ṽ (s)∈(0,x],1≤J̃(s)≤m}ds|(Ṽ (0), J̃(0)) = (0, 0)

)

,

which together with (5) leads to (ii).
Now we prove (iii). Recall σ and ν in (1) and (2). On {V (0) = 0}, hence on

{(Ṽ (0), J̃(0)) = (0, 0)}, it is observed that
∫ σ

0

1{V (t)∈B}dt =

∫ σ̃

0

1{Ṽ (s)∈B,J̃(s)=0}ds

for all Borel sets B in R. By Theorem 1.2 on page 170 in [1] again, we have

p0 =
1

ν
E

(
∫ σ

0

1{V (t)=0}dt|V (0) = 0

)

=
ν̃

ν

1

ν̃
E

(

∫ σ̃

0

1{(Ṽ (s),J̃(s))=(0,0)}ds|(Ṽ (0), J̃(0)) = (0, 0)

)

=
ν̃

ν
F0(0),(6)

and
∫ x

0

p(y)dy =
1

ν
E

(
∫ σ

0

1{V (t)∈(0,x]}dt|V (0) = 0

)

=
ν̃

ν

1

ν̃
E

(

∫ σ̃

0

1{Ṽ (s)∈(0,x],J̃(s)=0}ds|(Ṽ (0), J̃(0)) = (0, 0)

)

=
ν̃

ν
(F0(x)− F0(0)).(7)

Further,

ν = E

(
∫ σ

0

ds|V (0) = 0

)

= ν̃
1

ν̃
E

(

∫ σ̃

0

1{J̃(s)=0}ds|(Ṽ (0), J̃(0)) = (0, 0)

)
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= ν̃F0(∞).(8)

Noting from (ii) that F0(∞)−F0(0) = F (∞)1 and using F0(∞)+F (∞)1 = 1,
we have

(9) F0(∞) =
1 + F0(0)

2
.

Substituting (9) into (8) yields

ν̃

ν
=

2

1 + F0(0)
.

Finally, substituting the above into (6) and (7) leads to the assertion (iii). �

Corollary 1. For each i = 0, 1, . . . ,m, there exists a density function fi(x),
x ≥ 0 such that

(10) Fi(x)− Fi(0) =

∫ x

0

fi(y)dy.

Proof. From Lemma 2(iii) it follows that f0(x) = 1+F0(0)
2 p(x) satisfies (10)

for i = 0. By Lemma 2(ii), F (x)1 = F0(x) − F0(0). Since F0(x), x ≥ 0 is
absolutely continuous, so are Fi(x) for all i = 1, . . . ,m. This implies that there
are density functions fi(x), i = 1, . . . ,m, satisfying (10). �

The density functions fi(x), x ≥ 0, i = 1, 2, . . . ,m, satisfy the following
lemma.

Lemma 3. Let f(x) = (f1(x), f2(x), . . . , fm(x)). Then f(x) can be chosen so

that it is continuous in x ≥ 0. Moreover, it satisfies

(11) f(x) =

{

F (x)M + λF0(0)α, 0 ≤ x ≤ τ,
(F (x) − F (∞))T, x > τ,

where M ≡ λ1α+ T .

Proof. By Theorem 7.20 in [17], F (x) is differentiable in x almost everywhere
with respect to the Lebesgue measure (Lebesgue-a.e) and

f(x) =
d

dx
F (x), x > 0, Lebesgue-a.e.

For x ≥ 0, h > 0 and i = 1, 2, . . . ,m,

Fi(x + h) = P(Ṽ (h) ≤ x+ h, J̃(h) = i)

= P(Ṽ (h) ≤ x+ h, J̃(h) = i, J̃(0) = i)

+
∑

1≤j≤m,j 6=i

P(Ṽ (h) ≤ x+ h, J̃(h) = i, J̃(0) = j)

+ P(Ṽ (h) ≤ x+ h, J̃(h) = i, J̃(0) = 0).(12)

It is observed that
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• For x ≥ 0, h > 0 and 1 ≤ i ≤ m,

P(Ṽ (h) ≤ x+ h, J̃(h) = i, J̃(0) = i)

= P(Ṽ (0) ≤ x, J̃(0) = i)(1 + Tiih) + o(h)

= Fi(x) + Fi(x)Tiih+ o(h).(13)

• For x ≥ 0, h > 0 and 1 ≤ i 6= j ≤ m,

P(Ṽ (h) ≤ x+ h, J̃(h) = i, J̃(0) = j)

= P(Ṽ (0) ≤ x, J̃(0) = j)Tjih+ o(h)

= Fj(x)Tjih+ o(h).(14)

• For x ≥ 0, h > 0 and 1 ≤ i ≤ m,

P(Ṽ (h) ≤ x+ h, J̃(h) = i, J̃(0) = 0)

=

{

P(Ṽ (0) ≤ x, J̃(0) = 0)λhαi + o(h), if x ≤ τ

P(Ṽ (0) ≤ τ, J̃(0) = 0)λhαi + o(h), if x > τ

= F0(min{x, τ})λhαi + o(h)

= (F0(0) + F (min{x, τ})1)λhαi + o(h),(15)

where the last equality follows from Lemma 2(ii).

Substituting (13)-(15) into (12), we have for x ≥ 0 and 1 ≤ i ≤ m,

1

h
(Fi(x+ h)− Fi(x))

=

m
∑

j=1

Fj(x)Tji + λ(F0(0) + F (min{x, τ})1)αi + o(1) as h → 0 + .

Letting h → 0+ yields

f (x) = F (x)T + λ(F0(0) + F (min{x, τ})1)α, x ≥ 0, Lebesgue-a.e.

Modifying f on a Lebesgue null set, we may assert

(16) f(x) = F (x)T + λ(F0(0) + F (min{x, τ})1)α for all x ≥ 0.

This implies that f is continuous. By (16), f (∞) ≡ limx→∞ f(x) exists and
f(∞) = F (∞)T + λ(F0(0) + F (τ)1)α. Since F (∞) =

∫∞

0
f (x)dx is finite, we

have f (∞) = 0 and so

(17) λ(F0(0) + F (τ)1)α = −F (∞)T.

When x > τ , (16) together with (17) yields

f (x) = (F (x) − F (∞))T, x > τ.

This and (16) with 0 ≤ x ≤ τ yield (11). �
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Solving the equation (11) gives

(18) f(x) =

{

λF0(0)αeMx, 0 ≤ x ≤ τ,

(F (τ) − F (∞))TeT (x−τ), x > τ.

Since f (x) is continuous at x = τ , we have (F (τ) − F (∞))T = λF0(0)αeMτ

and (18) becomes

(19) f(x) =

{

λF0(0)αeMx, 0 ≤ x ≤ τ,

λF0(0)αeMτeT (x−τ), x > τ.

Now we determine F0(0). From F0(∞) + F (∞)1 = 1 and Lemma 2(ii), we
have

1 = F0(0) + 2

∫ ∞

0

f(x)dx1,

which leads to

1 = F0(0) + 2λF0(0)α
(

∫ τ

0

eMxdx+ eMτ (−T )−1
)

1.

Therefore

(20) F0(0) =

(

1 + 2λα
{

∫ τ

0

eMxdx+ eMτ (−T )−1
}

1

)−1

.

Finally, using (19), (20), and Lemma 2(ii) and (iii), we have the following
theorem.

Theorem 1. For the M/PH/1 queue with deterministic impatience time, the

density function p(x) of the workload is given by

p(x) =

{

p0λαeMx1, 0 ≤ x ≤ τ,

p0λαeMτeT (x−τ)1, x > τ,

where

(21) p0 =
(

1 + λα
{

∫ τ

0

eMydy + eMτ (−T )−1
}

1
)−1

.

We remark that for exponential service times, Theorem 1 is reduced to

p(x) =







(1−ρ)λe(ρ−1)µx

1−ρ2e(ρ−1)µτ , 0 ≤ x ≤ τ,
(1−ρ)λeλτ−µx

1−ρ2e(ρ−1)µτ , x > τ,

which is identical to the result of de Kok and Tijms [15] for 0 ≤ x ≤ τ .

Remark 1. When ρ ≤ 1, we have explicit expressions for the integral
∫ τ

0 eMydy
in (21). If ρ < 1, then it can be shown that all eigenvalues of M have negative
real parts, and so M is invertible and

∫ τ

0

eMxdx = (−M)−1
(

I − eMτ
)

.
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When ρ = 1, let ξ = (−T )−11 and η = (α(−T )−1ξ)−1α(−T )−1. It can be
shown that all eigenvalues of M − ξη have negative real parts and

∫ τ

0

eMxdx = (ξη −M)−1(I − e(M−ξη)τ ) + (τ − 1 + e−τ )ξη.

3. Performance measures

In this section we obtain performance measures such as the loss probability,
the waiting time distribution and the queue size distribution, by using Theorem
1.

Loss probability. The loss probability, denoted by ploss, is the probability that
the workload immediately before an arbitrary arrival is larger than τ , which is
1−P (τ) by the Poisson arrivals see time averages (PASTA) property. Therefore,

ploss =

∫ ∞

τ

p(x)dx = p0λαeMτ (−T )−11.(22)

We remark that for exponential service times, (22) is reduced to

ploss =
(1− ρ)ρe(ρ−1)µτ

1− ρ2e(ρ−1)µτ
,

which is identical to equation (4) in de Kok and Tijms [15].

Waiting time distribution. Let W denote the waiting time of an arbitrary cus-
tomer among all customers who are served or reneged. By the PASTA property,

P(W = 0) = p0,

d

dx
P(W ≤ x) = p(x), 0 < x < τ,

P(W = τ) = ploss.

From this we can obtain the moments of W . Specifically,

E[W ] = p0λα

∫ τ

0

xeMxdx1+ plossτ,(23)

E[W 2] = p0λα

∫ τ

0

x2eMxdx1+ plossτ
2.(24)

We remark that for exponential service times, (23) is reduced to

E[W ] =

ρ
1−ρ

1
µ − ( 1

1−ρ
1
µ + ρτ)ρe(ρ−1)µτ

1− ρ2e(ρ−1)µτ
,

which is identical to equation (5) in de Kok and Tijms [15].
Let Wserved denote the waiting time of an arbitrary customer who is served.

Then the distribution of Wserved is given by

P(Wserved = 0) =
p0

1− ploss
,



394 JERIM KIM AND JEONGSIM KIM

d

dx
P(Wserved ≤ x) =

p(x)

1− ploss
, 0 < x < τ,

and

E[Wserved] =
p0

1− ploss
λα

∫ τ

0

xeMxdx1,(25)

E[W 2
served] =

p0
1− ploss

λα

∫ τ

0

x2eMxdx1.(26)

Remark 2. When ρ ≤ 1, we can obtain explicit expressions for the integrals
∫ τ

0
xeMxdx and

∫ τ

0
x2eMxdx in (23)-(26) by the same argument as in Remark

1.

Queue size distribution. Let Q be the number of customers waiting in the queue
at an arbitrary time, excluding the one who may be in service. By the PASTA
property, Q has the same distribution as the number of customers in the queue
immediately before an arbitrary arrival, which has the same distribution as the
number of customers in the queue immediately after an arbitrary departure by
Burke’s theorem. Note that the departures from the queue consist of service
initiations and reneging. The number of customers in the queue immediately
after arbitrary service initiation or reneging is the number of customers arriving
during the waiting time W of an arbitrary customer. Therefore we have

Q = N(W ) in distribution,

where N(·) is a Poisson process with intensity λ that is independent of W .
Hence the probability generating function, E[zQ], |z| ≤ 1, of Q is given by

E[zQ] =

∫ ∞

0−

eλx(z−1)dP(W ≤ x)

= p0 + p0λα

∫ τ

0

eλx(z−1)eMxdx1+ plosse
λτ(z−1).(27)

Differentiating the above equation with respect to z and letting z → 1, we
obtain the moments of Q. Specifically,

E[Q] = λ
(

p0λα

∫ τ

0

xeMxdx1+ plossτ
)

= λE[W ],

E[Q2] = λ2
(

p0λα

∫ τ

0

x2eMxdx1+ plossτ
2
)

+ λE[W ] = λ2
E[W 2] + λE[W ].

Now, let L be the number of customers in the system, including the one who
may be in service. Then

L =

{

Q+ 1 if the server is busy,
0 if the server is idle.

Since P(L = 0) = p0, the above relation yields the probability generating
function of L

E[zL] = p0 + z(E[zQ]− p0)
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= p0 + zp0λα

∫ τ

0

eλx(z−1)eMxdx1+ plossze
λτ(z−1).(28)

From this we can obtain the moments of L. Specifically

E[L] = E[Q] + 1− p0,

E[L2] = E[Q2] + 2E[Q] + 1− p0.

Remark 3. When ρ ≤ 1, we can obtain explicit expressions for the integral
∫ τ

0 eλx(z−1)eMxdx in (27) and (28) by the same argument as in Remark 1.
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