• Title/Summary/Keyword: M$\"{o}$ssbauer spectroscopy

Search Result 130, Processing Time 0.032 seconds

Charge Structure of the Combined System (La0.6Sr0.4MnO3)0.7(La0.6Sr0.4FeO3)0.3 as Investigated by Mössbauer Spectroscopy

  • Uhm, Young Rang;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.18-20
    • /
    • 2002
  • The charge structures of (LSMO) and of the combined system $(La_{ 0.6}Sr_{0.4}FeO_3$(LSMO) and of the combined system (La_{0.6}Sr_{0.4}MnO_3)_{0.7}(La_{0.6}Sr_{0.4}/FeO_3)_{0.3}$are investigated by using M$\ddot{o}$ssbauer spectroscopy. The antiferromagnetically ordered $(La_{0.6}Sr_{0.4}FeO_3$(LSFO) has possible charges of Fe^{3+} and Fe^{4+}$, which include a low-spin $Fe^{4+}$ state at and above 230 K. The temperature dependences of the M$\ddot{o}$ssbauer spectra for the $(La_{ 0.6}Sr_{0.4}FeO_3$ system and for the combined $(LSMO)_{ 0.7}(LSFO)_{0.3}$ system are fitted as three sets of Zeeman patterns corresponding to $Fe^{3+}$ and $Fe^{4+} below 230 K. At and above 230 K, the fitted M$\ddot{o}$ssbauer spectra for the combined system are the same in all temperature ranges. Above 230 K, $(La_{0.6}Sr_{0.4}FeO_3$ spectrum consists of two sets of six Lorentzians for $Fe^{3+}$ and one line for low spin $Fe^{4+}$. It is worth noting that large fields are induced in the combined system.

Crystallographic, Magnetic and Mössbauer Study of Phase Transition in LaVO3

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.108-112
    • /
    • 2007
  • Nature of phase transition in $LaVO_3$ has been studied using X-ray diffraction, SQUID magnetometer, and $M\"{o}ssbauer$ spectroscopy with 1% of $^{57}Fe$ doped sample. The crystal structure was orthorhombic with space group Pnma. Antiferromagnetic phase transition temperature $T_N$ was 140K, below which a weak ferromagnetic trace has been found. $M\"{o}ssbauer$ spectra below $T_N$ were single set of hyperfine sextet, which enabled us to discard the possibility of two inequivalent magnetic sites or uncompensated antiferromagnetism. Hyperfine magnetic field abruptly disappeared as low as about 90K, much below $T_N$.

The Crystallograpic and Magnetic Properties of EuFeO3 Doped with in ions (In 이온을 첨가한 $EuFeO_{3}$의 결정구조 및 자기적 성질)

  • 김정기;서정철;한은주
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.335-339
    • /
    • 1994
  • The crystallograpic and magnetic properties of $Eu(Fe_{1-x}In_{x})O_{3}$ (x=0, 0.03과 0.05) have been studied by the methods of X-ray diffraction, $M\"{o}ssbauer$ spectroscopy, and magnetic hysteresis measurement at room temperature. The X-ray results show that the samples have a crystal structure of orthorhombic and unit cell volume of the crystal with the exception of the sample of x=0 increases as increasing the In concentration. In the analysis assuming two sets of six-line of $M\"{o}ssbauer$ spectra, it is found that the magnetic hyperfine field in each of sets decreases increasing x. The linewidth of the absorption lines for the samples increased as increasing x. This implies that the data involve a sum of several hyperfine patterns which have intensity being proportional to $_{n}P_{z}(x)$, the probability of an environment with z such Fe neighbors. The magnetic hysteresis curves show decrease of $M_{s}$ and increase of $H_{c}$ of the samples with increasing x.

  • PDF

[ $M\ddot{o}ssbauer$ ] Spectroscopy and Crystal Chemistry of Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$ (에이니그마타이트($Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$)의 뫼스바우어 분광분석과 결정화학)

  • Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.367-376
    • /
    • 2007
  • Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$, is a common constituent of sodium-rich alkaline igneous rocks and is classified a an open-branched single-chain silicate. $M\ddot{o}ssbauer$ spectroscopy of three natural aenigmatite specimens were done and the detailed crystal chemistry was obtained. Fitting of $M\ddot{o}ssbauer$ spectra led to the resolution of nine peaks. They consist of three doublets of $Fe^{2+}/oct$ and one merged peak at low velocity matching to two small peaks at high velocity which were assigned to $Fe^{3+}/tet\;and\;Fe^{2+}/oct$, respectively. Using the peak area for $Fe^{2+}\;and\;Fe^{3+}$ peaks, analytical data were recalculated. Precise assignment of $Fe^{2+}\;and\;Fe^{3+}$ ions in tetrahderal and octahedral sites revealed detailed crystal chemistry of aenigmatite. The existence of significant amounts of $Fe^{3+}/tet$ indicates that $Fe^{3+}$ has preference over $Al^{3+}$ for the tetrahedral sites. Crystal chemistry of aenigmatite (AEN1) yields the formula of $(Na_{3.97}Ca_{0.03})(Ca_{0.11}Mn_{0.59}Fe^{2+}{_{8.07}}Ti_{2.07}Mg_{0.70}Fe^{3+}{_{0.43}}Al_{0.04})(Fe^{3+}{_{0.56}}Al_{0.18}Si_{11.26})O_{40}$.

Superparamagnetic Properties of Ni0.7Zn0.3Fe2O4 Nanoparticles

  • Lee, Seung-Wha;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.84-88
    • /
    • 2005
  • Nanoparticles $Ni_{0.7}Zn_{0.3}Fe_2O_4$ is fabricated by a sol-gel method. The magnetic and structural properties of powders were investigated with XRD, SEM, $M\ddot{o}ssbauer$ spectroscopy, and VSM. $Ni_{0.7}Zn_{0.3}Fe_2O_4$ powders annealed at $300^{\circ}C$ have a spinel structure and behaved superparamagnetically. The estimated size of $Ni_{0.7}Zn_{0.3}Fe_2O_4$ nanoparticle is about 11 nm. $Ni_{0.7}Zn_{0.3}Fe_2O_4$ annealed at 400 and $500^{\circ}C$ has a typical spinel structure and is ferrimagnetic in nature. The isomer shifts indicate that the iron ions were ferric at the tetrahedral (A) and the octahedral (B). Blocking temperature $(T_B)\;of\;Ni_{0.7}Zn_{0.3}Fe_2O_4$ nanoparticle is about 260 K. The magnetic anisotropy constant of $Ni_{0.7}Zn_{0.3}Fe_2O_4$ annealed $300^{\circ}C$ were calculated to be $1.7X10^6\;ergs/cm^3$. Also, temperature of the sample increased up to $43^{\circ}C$ within 7 minutes under AC magnetic field of 7 MHz.

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

Crystallographic and Magnetic Properties of MnxFe3-xO4 Powders

  • Kwon, Woo Hyun;Lee, Jae-Gwang;Choi, Won Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.26-29
    • /
    • 2013
  • $Mn_xFe_{3-x}O_4$ powders have been fabricated by using sol-gel methods; their crystallographic and magnetic properties were investigated by using X-ray diffraction, scanning electron microscopy, M$\ddot{o}$ssbauer spectroscopy, and vibrating sample magnetometer. The $Mn_xFe_{3-x}O_4$ ferrite powders annealed at $500^{\circ}C$ had a single spinel structure regardless of the $Mn^{2+}$-doping amount and their lattice constants became larger as the $Mn^{2+}$ concentration was increased. Their Mossbauer spectra measured at room temperature were fitted with 2 Zeeman sextets due to the tetrahedral and octahedral sites of Fe ions, which made them ferrimagnetic. The magnetic behavior of $Mn_xFe_{3-x}O_4$ powders showed that the $Mn^{2+}$-doping amount made their saturation magnetization increase, but there were no severe effects on their coercivities. The saturation magnetization of the $Mn_xFe_{3-x}O_4$ powder varied from 38 emu/g to 70.0 emu/g and their minimum coercivity was 111.1 Oe.

Temperature Dependent Cation Distribution in Tb2Bi1Ga1Fe4O12

  • Park, Il-Jin;Park, Chu-Sik;Kang, Kyoung-Soo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.110-113
    • /
    • 2008
  • In this study, heavy rare earth garnet $Tb_2Bi_1Ga_1Fe_4O_{12}$ powders were fabricated by a sol-gel and vacuum annealing process. The crystal structure was found to be single-phase garnet with a space group of Ia3d. The lattice constant $a_0$ was determined to be 12.465 ${\AA}$. From the analysis of the vibrating sample magnetometer (VSM) hysteresis loop at room temperature, the saturation magnetization and coercivity of the sample are 7.64 emu/g and 229 Oe, respectively. The N$\acute{e}$el temperature($T_N$) was determined to be 525 K. The M$\ddot{o}$ssbauer spectrum of $Tb_2Bi_1Ga_1Fe_4O_{12}$ at room temperature consists of 2 sets of 6 Lorentzians, which is the pattern of single-phase garnet. From the results of the M$\ddot{o}$ssbauer spectrum at room temperature, the absorption area ratios of Fe ions on 24d and 16a sites are 74.7% and 25.3%(approximately 3:1), respectively. These results show that all of the non-magnetic Ga atoms occupy the 16a site by a vacuum annealing process. Absorption area ratios of Fe ions are dependent not only on a sintering condition but also on the temperature of the sample. It can then be interpreted that the Ga ion distribution is dependent on the temperature of the sample. The M$\ddot{o}$ssbauer measurement was carried out in order to investigate the atomic migration in $Tb_2Bi_1Ga_1Fe_4O_{12}$.

A Study on Embrittlement of Fast Neutron-irradiated Nuclear Reactor Pressure Vessel Steels at Room- and Liquid Nitrogen-temperature (상온 및 액체질소 온도에서 고속 중성자 조사된 원자로 압력 용기의 취화 현상에 관한 연구)

  • Kim, H.B.;Kim, H.S.;Kim, S.K.;Shin, D.H.;Yu, Y.B.;Ko, J.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • The embrittlement of fast neutron-irradiated reactor pressure vessel (RPV) steels was investigated by X-ray diffraction patterns at room temperature and $M\ddot{o}ssbauer$ spectroscopy at room- and liquid nitrogen-temperature. Neutron fluence on the samples were $10^{12},\;10^{13},\;10^{14},\;10^{15},\;10^{16},\;10^{17},\;10^{18}\;n/cm^2$. The X-ray diffraction patterns showed that the structure of the neutron unirradiated sample was bcc type, where as but the neutron irradiated samples with the fluence higher than $10^{17}\;n/{\cal}cm^2$ were so severely damaged, that bcc type structure disappeared. The $M\ddot{o}ssbauer$ spectra of all samples showed superposition of two or more sextets. In this paper all $M\ddot{o}ssbauer$ spectra were fitted by three set of sextet. The isomer shift and quadrupole splitting values were found around zero. At liquid nitrogen temperature, magnetic hyperfine field and absorption area increase rapidly S 1 sextet in the samples of $10^{17}\~10^{18}\;n/{\cal}cm^2$ neutron fluences. And at room temperature, magnetic hyperfine field and absorption increased rapidly at SI sextet in the samples of $10^{17}\~10^{18}\;n/{\cal}cm^2$ neutron fluences. This rapid increase of magnetic hyperfine field and absorption area were inferred to be caused by the change of $^{56}Fe,\;^{55}Mn$ into $^{57}Fe$ due to by neutron irradiation.